Vai al contenuto principale della pagina

Causal inference : the mixtape / / Scott Cunningham



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Cunningham Scott Visualizza persona
Titolo: Causal inference : the mixtape / / Scott Cunningham Visualizza cluster
Pubblicazione: New Haven, Connecticut : , : Yale University Press, , [2021]
©2021
Descrizione fisica: 1 online resource (352 pages) : illustrations
Disciplina: 501
Soggetto topico: Causation
Inference
analysis of causes
social sciences
information analysis
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: What Is Causal Inference? -- Do Not Confuse Correlation with Causality -- OptimizationMakes Everything Endogenous -- Example: Identifying Price Elasticity of Demand -- Conclusion -- Probability and Regression Review -- Directed Acyclic Graphs -- Introduction -- Introduction to DAG Notation -- Potential Outcomes Causal Model -- Introduction -- Physical Randomization -- Randomization Inference -- Conclusion -- Matching and Subclassification -- Subclassification -- Exact Matching -- Approximate Matching -- Regression Discontinuity -- Huge Popularity of Regression Discontinuity -- Estimation Using an RDD -- Challenges to Identification -- Replicating a Popular Design: The Close Election -- Regression Kink Design -- Conclusion -- Instrumental Variables -- History of Instrumental Variables: Father and Son -- Intuition of Instrumental Variables -- Homogeneous Treatment Effects -- Parental Methamphetamine Abuse and Foster Care -- The Problem of Weak Instruments -- Heterogeneous Treatment Effects -- Applications -- Popular IV Designs -- Conclusion -- Panel Data -- DAG Example -- Estimation -- Data Exercise: Survey of Adult Service Providers -- Conclusion -- Difference-in-Differences -- John Snow’s Cholera Hypothesis -- Estimation -- Inference -- Providing Evidence for Parallel Trends Through Event Studies and Parallel Leads -- The Importance of Placebos in DD -- Twoway Fixed Effects with Differential Timing -- Conclusion -- Synthetic Control -- Introducing the Comparative Case Study -- Prison Construction and Black Male Incarceration -- Conclusion.
Sommario/riassunto: An accessible and contemporary introduction to the methods for determining cause and effect in the social sciences Causal inference encompasses the tools that allow social scientists to determine what causes what. Economists—who generally can’t run controlled experiments to test and validate their hypotheses—apply these tools to observational data to make connections. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied, whether the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the introduction of malaria nets in developing regions on economic growth. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and Stata programming languages.
Titolo autorizzato: Causal inference  Visualizza cluster
ISBN: 9780300255881
0-300-25588-8
9780300251685
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910554223803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui