top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bioanalytical Techniques : Principles and Applications
Bioanalytical Techniques : Principles and Applications
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (713 pages)
Altri autori (Persone) AltalhiTariq
AlosaimiAbeer
CruzJorddy Neves
ISBN 1-394-31413-2
1-394-31412-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020011603321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Essential oils : extraction methods and applications / / Tariq Altalhi, and Jorddy Neves Cruz
Essential oils : extraction methods and applications / / Tariq Altalhi, and Jorddy Neves Cruz
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (1075 pages)
Disciplina 661.806
Soggetto topico Essences and essential oils
ISBN 1-119-82961-5
1-119-82960-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Methodological Approach of Plant Essential Oils and their Isolated Bioactive Components for Antiviral Activities -- 1.1 Introduction -- 1.2 General Chemical Properties and Bioactivity -- 1.3 Antiviral Mechanisms -- 1.3.1 Time of Addition Assay -- 1.3.1.1 Pretreatment of Host Cells -- 1.3.1.2 Pretreatment of Virions -- 1.3.1.3 Co-Treatment of Host/Cultured Cells and Virions During Virus Inoculation -- 1.3.1.4 Post-Entry Treatment -- 1.3.2 Thermal Shift Assays -- 1.3.2.1 Viral Attachment Assay -- 1.3.2.2 Viral Fusion Assay (Entry Assay) -- 1.3.3 Morphological Study -- 1.3.4 Protein Inhibition -- 1.3.5 Other Metabolic Anti-Viral Mechanisms -- 1.4 Assessment of Antiviral Activities via In Vitro Assays -- 1.4.1 Determination of Cytotoxicity (Cytopathogenic Reduction Assay) -- 1.4.2 In Vitro Activities on Different Viruses -- 1.4.2.1 Human Herpes Virus -- 1.4.2.2 Influenza Virus -- 1.4.2.3 Non-Enveloped Viruses -- 1.4.2.4 Other Viruses -- 1.5 Activities of Essential Oils in Relation to Their Bioactive Components -- 1.6 Antiviral Activities as Compared to the Polarity of Bioactive Components -- 1.7 In Vivo Studies of Essential Oils for its Antiviral Effect -- 1.7.1 Herpes Simplex Virus -- 1.7.2 Influenza Virus -- 1.7.3 West Nile Virus -- 1.8 Activities In-Respect to the Available Antivirals -- 1.9 Antiviral Essential Oils and Their Bioactive Components Loaded in Nanosystems -- 1.10 Conclusion -- References -- Chapter 2 Essential Oils Used to Inhibit Bacterial Growth in Food -- 2.1 Introduction -- 2.2 Chemistry of Essential Oils -- 2.3 Essential Oils Against Microorganisms in Food Products -- 2.4 Application of Essential Oils in the Food Industry -- 2.5 Essential Oil Extraction Techniques -- 2.6 Conclusions -- References -- Chapter 3 Industrial Application of Essential Oils.
3.1 Introduction -- 3.2 Essential Oils -- 3.2.1 Sources and Chemical Composition -- 3.2.2 Extraction Methods -- 3.2.2.1 Conventional Extraction Methods -- 3.2.2.2 Innovative Extraction Methods -- 3.2.3 Industrial Applications of Essential Oils -- 3.2.3.1 Food Preservation and Active Packaging Systems -- 3.2.3.2 Aromatherapy -- 3.2.3.3 Pharmaceutical and Medicinal Application -- 3.2.3.4 Biopesticide in Insect Pest Management -- Conclusion -- Declaration about Copyright -- References -- Chapter 4 Influence of Biotic and Abiotic Factors on the Production and Composition of Essential Oils -- 4.1 Introduction -- 4.2 Essential Oil Characteristics -- 4.3 Factors Influencing Essential Oils Production and Composition -- 4.4 Abiotic Factors -- 4.4.1 Drought -- 4.4.2 Salinity -- 4.4.3 Temperature -- 4.4.4 Light -- 4.4.5 Nutrients -- 4.4.6 Heavy Metals -- 4.5 Biotic Factors -- 4.6 Concluding Remarks -- Acknowledgements -- References -- Chapter 5 Investigation of Antiviral Effects of Essential Oils -- 5.1 Introduction -- 5.2 Viruses: Structure, Characteristics, and Replication -- 5.3 In Vitro Antiviral Activity and Mechanism of Action Investigations of Essential Oils and Essential Oil Components -- 5.3.1 Investigation of In Vitro Antiviral Activities -- 5.3.1.1 Plaque Reduction Assay -- 5.3.1.2 The Inhibition of Viral Cytopathogenic Effect -- 5.3.2 Mechanisms of Action -- 5.3.2.1 Time-of-Drug-Addition Assay -- 5.3.2.2 Temperature-Shift Assay -- 5.3.2.3 Morphological Alteration -- 5.3.2.4 Protein Inhibition -- 5.3.2.5 Other Mechanisms of Action -- 5.3.3 Selectivity Index (SI) -- 5.4 The Antiviral Efficacy of Essential Oils on Viruses Affecting Different Body Systems -- 5.4.1 Respiratory System -- 5.4.1.1 Influenza Virus -- 5.4.1.2 Adenovirus and Rhinovirus -- 5.4.1.3 Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-COV-1).
5.4.1.4 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) -- 5.4.2 GIT System -- 5.4.2.1 Coxsackie Virus -- 5.4.2.2 Dengue Virus -- 5.4.2.3 Yellow Fever Virus -- 5.4.2.4 Murine Norovirus Type 1 -- 5.4.3 Nervous System -- 5.4.3.1 West Nile Virus -- 5.4.4 Immune System -- 5.4.4.1 HIV -- 5.4.5 Reproductive System -- 5.4.5.1 Human Papilloma Virus (HPV) -- 5.4.6 Other Viruses -- 5.4.6.1 Human Herpes Virus -- 5.4.6.2 Orf Virus -- 5.5 The Antiviral Efficacy of Essential Oils on Phyto-Pathogenic Viruses -- 5.6 The Antiviral Efficacy of the Essential Oils on Animal.Infecting Viruses -- 5.6.1 Virus Affecting Cattle (Bovine Viral Diarrhea Virus) -- 5.6.2 Virus Affecting Cats (Feline Calicivirus F9) -- 5.6.3 Virus Affecting Pigs (Porcine Parvovirus) -- 5.7 Synergistic Effect of Essential Oil Components with Known Antiviral Drugs -- 5.8 Aromatherapy and its Role as an Antiviral Agent -- 5.9 Route of Essential Oil Administration -- 5.10 Nano-Formulated Essential Oils: A Promising Approach to Enhance Antiviral Activity -- 5.11 Safety of Essential Oils -- 5.12 Antiviral Essential Oils: Drawbacks versus Future Perspectives -- 5.13 Summary -- References -- Chapter 6 Mentha sp. Essential Oil and Its Applicability in Brazil -- Introduction -- 6.1 Ethnobotany of the Mentha in Brazil -- 6.2 Chemical Constituents of Mentha Oil -- 6.3 Evaluation of Biological Activities of Mentha Essential Oils -- 6.4 Toxicity of Essential Oils from Mentha Used in Folk Medicine -- 6.5 Final Considerations and Perspectives -- References -- Chapter 7 Microbial Influence on Plants for Enhanced Production of Active Secondary Metabolites -- 7.1 Introduction -- 7.2 Classes of Plants Secondary Metabolites -- 7.2.1 Terpenes -- 7.2.2 Phenolic Compounds -- 7.2.3 Nitrogen-Containing Secondary Metabolites -- 7.2.4 Sulphur Containing Secondary Metabolites.
7.3 Secondary Metabolites Production from Plants -- 7.3.1 In Vivo Production of Secondary Metabolites -- 7.3.2 In Vitro Secondary Metabolites Production -- 7.4 Interaction of Microorganisms in the Rhizosphere -- 7.5 Influence of Bacteria and Fungi on Plants -- 7.5.1 Plant Growth Promoters -- 7.5.1.1 Plant Growth-Promoting Bacteria (PGPR) -- 7.5.1.2 Plant Growth-Promoting Fungi (PGPF) -- 7.5.2 Production of Plant Biomass -- 7.5.3 Bacteria and Fungus as Biofertilizers -- 7.5.4 Role of Bacteria and Fungi as a Phytostimulator -- 7.5.5 Role of Bacteria and Fungi as a Biopesticides -- 7.5.6 Stress Tolerant Activity of Bacteria and Fungi -- Conclusion and Future Perspectives -- References -- Chapter 8 Valorization of Limonene Over Acid Solid Catalysts -- 8.1 Introduction -- 8.2 Limonene Reactions with Alcohols -- 8.3 Hydration and Acetoxylation -- 8.4 Conversion of Limonene into p-Cymene -- 8.5 Conclusions -- References -- Chapter 9 Elucidating the Role of Essential Oils in Pharmaceutical and Industrial Applications -- 9.1 Introduction -- 9.2 Extraction of Volatile Oils from Various Sources -- 9.2.1 Terpenes -- 9.2.2 Hydrocarbons -- 9.3 Role of Essential Oils in Industry -- 9.3.1 Role in Cosmetics and Aromatherapy -- 9.3.1.1 Cosmetic Industry -- 9.3.1.2 Immortelle Essential Oil -- 9.3.1.3 Lavender Essential Oil -- 9.3.1.4 German Chamomile Oil -- 9.3.1.5 Neroli Essential Oil -- 9.3.1.6 Peppermint Essential Oil -- 9.3.1.7 Rosemary Essential Oil -- 9.3.2 Application in Food Industry -- 9.3.2.1 Food Preservation -- 9.3.2.2 Food Packaging -- 9.4 Pharmacological Effects of Essential Oils -- 9.5 Concluding Remarks -- Acknowledgment -- References -- Chapter 10 Uses of Essential Oils in Different Sectors -- 10.1 Introduction -- 10.2 Food and Beverage -- 10.3 Packaging -- 10.4 Cosmetic and Perfumery -- 10.5 Aromatherapy -- 10.6 Medical -- 10.7 Agriculture.
10.8 Textile -- 10.9 Cleaning Household -- 10.10 Safety of Essential Oils -- Conclusion -- References -- Chapter 11 Chemical Composition and Pharmacological Activities of Essential Oils -- 11.1 Introduction -- 11.2 Anticancer -- 11.2.1 Role of Terpenes in Anticancer Activity -- 11.2.2 Role of Aromatic Compounds in Anticancer Activity -- 11.2.3 Mode of Action -- 11.2.4 The Effect of EOs in Different Types of Cancers -- 11.2.5 Multi-Drug Resistance (MDR) -- 11.3 Anti-Inflammatory -- 11.3.1 Terpenoids for Anti-Inflammatory -- 11.3.2 Phenylpropanoids for Anti-Inflammatory -- 11.3.3 Role of Essential Oil for Anti-Inflammatory -- 11.4 Anti-Viral -- 11.4.1 Terpenoids for Anti-Viral Activity -- 11.4.2 Essential Oils for Coronavirus -- 11.4.3 Essential Oil for Anti-Viral Activity -- 11.5 Anti-Fungal -- 11.5.1 Mode of Action -- 11.5.2 Essential Oil for Anti-Fungal Activity -- 11.6 Antidiabetic -- 11.7 Larvicidal Activity -- 11.8 Anti-Bacterial -- Conclusion -- Conflicts of Interest -- Acknowledgements -- References -- Chapter 12 Augmented Stability and Efficacy of Essential Oils Through Encapsulation Approach -- 12.1 Introduction -- 12.2 Various Strategies for Encapsulation of Essential Oils -- 12.2.1 Essential Oils Encapsulated in Liposomes -- 12.2.2 Essential Oils Encapsulated in Cyclodextrin Complexes -- 12.2.3 Essential Oils Encapsulated in Polymeric Complexes -- 12.2.4 Essential Oils Encapsulated in Electrospun Fibers -- 12.2.5 Essential Oils Encapsulated in Microemulsion/Nanoemulsions -- 12.2.6 Essential Oils Encapsulated in Mesoporous Silica Nanoparticles -- 12.3 Conclusions -- References -- Chapter 13 Antimicrobial Effect of Essential Oils for Food Application -- 13.1 Introduction -- 13.2 Biotechnological Strategies for Extracting Essential Oils for Food Application -- 13.3 Methods for Evaluating the EO Inhibitory Activity In Vitro.
13.3.1 Factors Affecting Method Susceptibility.
Record Nr. UNINA-9910731597503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrogen Energy Production and Fuel Generation
Hydrogen Energy Production and Fuel Generation
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (648 pages)
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-24854-7
1-394-24853-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911028671803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanoionics : Fundamentals and Applications
Nanoionics : Fundamentals and Applications
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (363 pages)
Disciplina 541.372
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-31394-2
1-394-31393-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Nanoionics for Energy Storage and Conversion: Materials and Technologies -- 1.1 Introduction -- 1.2 Nanoionics for Energy Storage -- 1.2.1 Nanoionics for Batteries -- 1.2.2 Nanoionics for Supercapacitors -- 1.2.3 Nanoionics for Fuel Cell -- 1.3 Nanostructured Materials of Transport Behavior -- 1.3.1 Accumulating of Space Charges -- 1.3.2 Space Charges Depletion -- 1.4 Nanomaterials for Energy Storage Applications -- 1.4.1 Nanoionics Application and Technologies in Fuel Cells -- 1.4.2 Nanoionics Application and Technologies in Lithium Batteries -- 1.4.2.1 Nanocrystalline Electrodes -- 1.4.2.2 Shape of the Curve and Cell Voltage -- 1.4.2.3 Low Potential Extra Storage of Lithium -- 1.4.2.4 Interfacial Lithium Storage: Phenomenological Model -- 1.4.3 Nanoionics Application and Technologies in Supercapacitors -- 1.4.3.1 Novel Nanoionic Phenomena, Effects, and Physicochemical Nano Systems -- 1.4.3.2 Ionic Conductors Classification: Innovative Superionic Conductors -- 1.4.3.3 AdSIC/EC Heterojunctions for Ion-Electron Mechanisms -- 1.4.3.4 Creation of Nanoionic Supercapacitors: Models and Methods -- 1.4.3.5 AdSIC-Based Devices -- 1.4.3.6 Deep-Sub-Voltage Nanoelectronics as Impulse Storage Capacitors in -- 1.4.3.7 Micron Size Supercapacitors Based Advanced Superionic Conductors -- 1.4.4 Nanoionics Application and Technologies in Novel Memory Devices -- 1.4.4.1 Resistive-Switching Memories of Nanoionics -- 1.4.4.2 Memristors for Non-Volatile Memories (NVM) -- 1.4.4.3 Memristors for Artificial Synapses -- 1.4.4.4 Recognition of LTP and STP in Oxide Memristors -- 1.4.4.5 Realization of STDP in Oxide Memristors -- 1.5 Prospects and Outlook: Why Nanoionics? -- 1.5.1 Future of Nanoionic Devices -- 1.6 Conclusions -- References.
Chapter 2 Fundamentals of Nanoionics and their Applications -- 2.1 Introduction -- 2.2 Applications -- 2.2.1 Employment of Interface - Dominant Materials (IDMs) in Novel Solid State Power Devices -- 2.2.1.1 Micro Solid Oxide Fuel Cells (µSOFC) -- 2.2.1.2 Ion Gated Thermoelectrics -- 2.2.1.3 Solid Oxide Photoelectrochemical Cells (SOPECs) -- 2.2.2 Nanoarchitectonics for Atom-Based Devices -- 2.2.3 Biological Nanoionics -- 2.2.4 Artificial Nanoionics -- 2.2.4.1 Liquid Nanoionics -- 2.2.5 Utilization of Nanochannels for Electrochemical Energy Storage -- 2.2.5.1 Lithium-Ion Batteries (LIB) -- 2.2.5.2 Lithium Sulfur Batteries -- 2.2.5.3 Lithium Organic Batteries (LOB) -- 2.2.6 Nanocrystalline Structures -- 2.2.6.1 Sol-Gel (Chemical Deposition Method) -- 2.2.6.2 Microstructure Investigation -- 2.2.6.3 Storage of Hydrogen -- 2.3 Future Perspective -- 2.4 Conclusion -- References -- Chapter 3 Nanomaterials for Nanoionics Applications: Synthesis, Characterization and Device Integration -- 3.1 Introduction -- 3.2 Synthesis of Nanomaterials -- 3.2.1 Chemical Route of Synthesis of Nanomaterials -- 3.2.2 Physical Route of Synthesis of Nanomaterials -- 3.2.3 Biological Route of Synthesis of Nanomaterials -- 3.3 Characterization of Nanomaterials -- 3.3.1 Surface Morphology, Surface Area, Size and Shape of Nanoparticles -- 3.3.2 Analysis of Elemental and Mineral Composition -- 3.3.3 Structures and Bonds in Nanoparticles -- 3.3.4 Magnetic Properties of Nanoparticles -- 3.4 Device Integration of Nanoionics -- 3.4.1 Resistive Switching Memories -- 3.4.2 Lithium Batteries -- 3.5 Summary and Future Prospects -- References -- Chapter 4 Nano-Porous Silica in Devices and Ion-Based Systems - Unveiling the Design, Fabrication, and Diverse Applications -- 4.1 Introduction -- 4.2 Methods Used for Synthesis of Nanoporous Silica.
4.3 Applications of Nanoporous Silica in Various Fields -- 4.3.1 Biomedical -- 4.3.2 Water Decontamination -- 4.3.3 Energy -- 4.4 Conclusion -- Acknowledgement -- References -- Chapter 5 Bioinspired Nanoionics for Biomedical and Bioelectronic Applications -- 5.1 Introduction -- 5.2 Biomimetic Ion Transport Systems -- 5.2.1 Ion Channels -- 5.2.2 Ion Pumps -- 5.2.3 Ion Exchangers -- 5.2.4 Biomimetic Ion Transport Systems in Drug Delivery -- 5.2.5 Biomedical Applications -- 5.2.5.1 Drug Delivery -- 5.2.5.2 Bioimaging -- 5.2.5.3 Tissue Engineering -- 5.2.6 Bioelectronic Applications -- 5.2.6.1 Ion-Selective Sensors -- 5.2.6.2 Neuroprosthetics -- 5.2.6.3 Energy Storage -- 5.3 Biomimetic Materials in Bioinspired Nanoionics -- 5.3.1 Bioresponsive Polymers -- 5.3.2 Bioinspired Nanocomposites -- 5.3.3 Nanoparticle-Based Ion Carriers -- 5.4 Biomedical Breakthroughs -- 5.4.1 Organelle-Targeted Drug Delivery -- 5.4.2 Theranostics: Simultaneous Therapy and Imaging -- 5.4.3 Artificial Biomimetic Organs -- 5.5 Bioelectronic Innovations -- 5.5.1 Bioelectronic Skin -- 5.5.2 Ionic Circuitry -- 5.5.3 Bioelectronic Therapeutics -- 5.6 Biocompatibility and Safety -- 5.7 Ethical and Regulatory Consideration -- 5.8 Conclusion -- References -- Chapter 6 Nanoionics in Biomedical Applications: Diagnostic and Therapeutic Approaches -- 6.1 Introduction to Nanoionics -- 6.2 Types of Nanoionics -- 6.2.1 Biological Nanoionics -- 6.2.2 Artificial Nanoionics -- 6.2.3 Biological-Artificial Hybrid Nanoionics -- 6.3 General Applications of Nanoionics -- 6.4 Applications of Nanoionics in Diagnosis -- 6.5 Applications of Nanoionics in Therapeutics -- 6.5.1 Nanoionics in Cancer Therapy -- 6.5.2 Nanoionics as Antibiotics -- 6.6 Conclusions -- References -- Chapter 7 Nanoionics in Electronics and Optoelectronics: Advances and Applications -- 7.1 Introduction.
7.2 Development of Nanoionic Materials -- 7.2.1 Electronics -- 7.2.2 Optoelectronics -- 7.3 Application of Nanoionics in Electronics -- 7.3.1 Resistive Switching -- 7.3.2 Memristive Devices -- 7.3.2.1 Redox Reactions Initiated by the Migration of Cations -- 7.3.2.2 Redox Reactions Initiated by the Migration of Anions -- 7.3.3 Transistor -- 7.4 Application of Nanoionics in Optoelectronics -- 7.4.1 Light Emitting Diode -- 7.4.2 Solar Cell -- 7.4.3 Photo Assisted Switch -- 7.4.4 High-Performance Optical Sensors -- 7.5 Future Perspectives and Challenges -- 7.6 Conclusions -- References -- Chapter 8 Challenges and Opportunities in Nanoionics: Towards Breakthrough Applications -- 8.1 Introduction -- 8.2 Mechanism Behind Nanoionics -- 8.3 Significance of Nanomaterials in Nanoionics -- 8.3.1 Metal Oxide Nanomaterials -- 8.3.2 Ceramic Nanomaterials -- 8.3.3 Polymeric Nanomaterials -- 8.3.4 Carbon-Based Nanomaterials -- 8.3.5 Two-Dimensional (2D) Materials -- 8.3.6 Hybrid Nanostructures -- 8.3.7 Nanocomposites -- 8.4 Energy Storage Applications -- 8.5 Emerging Electronics -- 8.5.1 Memory Devices -- 8.5.2 Sensors -- 8.5.3 Energy Harvesting Devices -- 8.6 Challenges in Nanoionics Technology -- 8.7 Sustainability and Ethical Considerations in Nanoionics -- 8.8 Cross-Disciplinary Opportunities -- 8.9 Educational Outreach and Knowledge Transfer -- 8.10 Significance of Nanoionics in Industrial Revolution -- 8.11 Innovation and Future Prospects -- Conclusion -- References -- Chapter 9 Nanoscale Modeling and Simulation in Nanoionics: Insights into Material Behavior and Device Design -- 9.1 Introduction -- 9.2 Modeling and Simulation Methods in Nanoionics -- 9.2.1 Molecular Dynamic Simulations (MD) -- 9.2.2 Charge Transport Model (CTM) for Nanoionic Memristors -- 9.2.3 Linear Drift Memristor Model -- 9.2.4 SPICE Model for Memristors.
9.2.5 Structure-Dynamic Approach (SDA) -- 9.2.6 Finite Element Method (FEM) Model -- 9.3 Nanoionic Memristors -- 9.3.1 Types of Memristors -- 9.4 Resistor-Switching Devices Design -- 9.4.1 A Cation-Based Resistive-Switching Effect -- 9.4.2 B Anion-Based Resistive-Switching Effect -- 9.4.3 Cation and Anion-Based Resistive-Switching Effect -- 9.5 Quantum-Point Contacts -- 9.6 Magnetic Nanostructures -- 9.7 Selector Devices -- 9.8 Future Perspective -- References -- Chapter 10 Commercialization and Industrial Aspects of Nanoionics: Lab to Market -- 10.1 Introduction -- 10.1.1 Importance in Emerging Technologies -- 10.1.1.1 Advancements in Energy Storage Applications -- 10.1.1.2 Next-Generation Electronics -- 10.1.1.3 Transformation in Sensor Technologies -- 10.2 Commercialization Challenges -- 10.2.1 Navigating Health and Environmental Concerns -- 10.2.2 Ensuring Safety in Nanoionic Applications -- 10.2.3 The Role of Public Awareness and Acceptance -- 10.2.4 Mitigating Risks Associated with Nanoproduct Exposure -- 10.3 Nano-Ionic Memory: Implications for the Economy -- 10.4 Future Prospects -- 10.5 Conclusion -- References -- Chapter 11 Ion Migration and Defects in Nanostructures: Implications for Device Performance and Reliability -- 11.1 Introduction -- 11.2 Ion Migration in Nanoionics -- 11.2.1 Types of Migration -- 11.2.1.1 Cation Migration -- 11.2.1.2 Anion Migration -- 11.3 Effect of Local Ion Migration on Device Performance -- 11.3.1 Modified Electrical Properties -- 11.3.2 Material Degradation -- 11.3.3 Memory Devices and Resistive Switching -- 11.3.4 Battery Performance -- 11.3.5 Corrosion and Chemical Reactions -- 11.3.6 Effect of Neighbourhood Ion Migration on Tool Overall Performance -- 11.4 Limitations of Ion Migration -- 11.5 Defects in Nanoionics -- 11.5.1 Point Defect Chemistry -- 11.5.2 Size Defects.
11.5.3 Bulk Defects and Interfacial Thermodynamics.
Record Nr. UNINA-9911022470503321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum Optics Devices on a Chip
Quantum Optics Devices on a Chip
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (0 pages)
Disciplina 535/.2
Altri autori (Persone) AltalhiTariq
AlshehriNaif Ahmed
CruzJorddy Neves
Soggetto topico Quantum optics
ISBN 1-394-24860-1
1-394-24859-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020066403321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Materials for Fuel Cell Technologies
Sustainable Materials for Fuel Cell Technologies
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (623 pages)
Disciplina 621.312429
Altri autori (Persone) AltalhiTariq
CruzJorddy Neves
ISBN 1-394-24780-X
1-394-24777-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911027075603321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Water Splitting
Water Splitting
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (333 pages)
Altri autori (Persone) AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
ISBN 1-394-24765-6
1-394-24763-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020194803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui