top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
High-speed networks : a tutorial / / Jorge Crichigno [and three others]
High-speed networks : a tutorial / / Jorge Crichigno [and three others]
Autore Crichigno Jorge
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (471 pages)
Disciplina 004.6
Collana Practical Networking
Soggetto topico Computer networks
ISBN 3-030-88841-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Audience -- What is Unique About This Book? -- The Virtual Platform and Virtual Laboratory Experiments -- Organization -- Relevance of Networking Tools -- Acknowledgement -- Contents -- Abbreviations -- Introduction to High-Speed Networks and Science DMZ -- 1 Objective and Access to Accompanied Training Material -- 2 Motivation for Science DMZs -- 3 Science DMZs Applications -- Chapter 1-Lab 1: Introduction to Mininet -- 4 Introduction to Mininet -- 5 Invoking Mininet Using the CLI -- 5.1 Invoking Mininet Using the Default Topology -- 5.2 Testing Connectivity -- 6 Building and Emulating a Network in Mininet Using the GUI -- 6.1 Building the Network Topology -- 6.2 Testing Connectivity -- 6.3 Automatic Assignment of IP Addresses -- 6.4 Saving and Loading a Mininet Topology -- Chapter 1-Lab 2: Introduction to iPerf3 -- Lab Roadmap -- 7 Introduction to iPerf3 -- 8 Lab Topology -- 8.1 Starting Host h1 and Host h2 -- 9 Using iPerf3 (Client and Server Commands) -- 9.1 Starting Client and Server -- 9.2 Setting Transmitting Time Period -- 9.3 Setting Time Interval -- 9.4 Changing the Number of Bytes to Transmit -- 9.5 Specifying the Transport-Layer Protocol -- 9.6 Changing Port Number -- 9.7 Export Results to JSON File -- 9.8 Handle One Client -- 10 Plotting iPerf3 Results -- References -- Network Cyberinfrastructure Aspects for Big Data Transfers -- 1 Limitations of Enterprise Networks and Motivation for Science DMZs -- 2 Science DMZ Architecture -- 2.1 Addressing the Enterprise Network Limitations -- 3 WAN Cyberinfrastructure -- 3.1 Connecting a Science DMZ via an Internet2 POP -- 3.2 Connecting a Science DMZ via a Regional REN -- 3.3 Connecting a Science DMZ via a Commercial ISP -- 3.4 Connecting a Science DMZ via a Commercial ISP Circuit -- 4 Current State: Science DMZ Deployment in the U.S.
Chapter 2-Lab 3: Emulating WAN with NETEM Part I-Latency and Jitter -- 5 Introduction to Network Emulators and NETEM -- 5.1 NETEM -- 5.2 WANs and Delay -- 6 Lab Topology -- 6.1 Starting Host h1 and Host h2 -- 7 Adding/Changing Delay to Emulate a WAN -- 7.1 Identify Interface of Host h1 and Host h2 -- 7.2 Add Delay to Interface Connecting to WAN -- 7.3 Changing the Delay in Emulated WAN -- 8 Restoring Original Values (Deleting the Rules) -- 9 Adding Jitter to Emulated WAN -- 9.1 Add Jitter to Interface Connecting to WAN -- 10 Adding Correlation Value for Jitter and Delay -- 11 Delay Distribution -- Chapter 2-Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption -- 12 Introduction to Network Emulators and NETEM -- 13 Lab Topology -- 13.1 Testing Connectivity Between Two Hosts -- 14 Adding/Changing Packet Loss -- 14.1 Identify Interface of Host h1 and Host h2 -- 14.2 Add Packet Loss to the Interface Connecting to the WAN -- 14.3 Restore Default Values -- 14.4 Add Correlation Value for Packet Loss to Interface Connecting to WAN -- 15 Adding Packet Corruption -- 15.1 Add Packet Corruption to an Interface Connected to the WAN -- 16 Add Packet Reordering -- 17 Add Packet Duplication -- Chapter 2-Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF) -- 18 Introduction to Token Bucket Algorithm -- 19 Lab Topology -- 19.1 Starting Host h1 and Host h2 -- 20 Rate Limiting on End-Hosts -- 20.1 Identify Interface of Host h1 and Host h2 -- 20.2 Emulating 10Gbps High-Latency WAN -- 21 Rate Limiting on Switches -- 22 Combining NETEM and TBF -- References -- Data-Link and Network Layer Considerations for LargeData Transfers -- 1 Data-Link and Network-Layer Devices -- 2 Switching Review -- 3 Switching Considerations for Science DMZs -- 3.1 Traffic Profile -- 3.2 Maximum Transmission Unit.
3.3 Buffer Size of Output or Transmission Ports -- 3.4 Bufferbloat -- 3.5 Routers and Switches in a Hierarchical Network -- 4 Switches in Enterprise Networks and Science DMZs -- Chapter 3-Lab 6: Router's Buffer Size -- 5 Introduction -- 5.1 Introduction to Switching -- 5.2 Router Architecture -- 5.3 Where does Packet Loss Occur? -- 5.4 Buffer Size -- 6 Lab Topology -- 6.1 Starting Host h1, Host h2, Host h3, and Host h4 -- 6.2 Modifying Hosts' Buffer Size -- 6.3 Emulating High-Latency WAN -- 6.4 Testing Connection -- 7 Testing Throughput with 100 · MTU Switch's Buffer Size -- 7.1 Setting Switch S1's Buffer Size to 100 · MTU -- 7.2 TCP Cubic -- 7.3 TCP Reno -- 7.4 TCP BBR -- 8 Testing Throughput with One BDP Switch's Buffer Size -- 8.1 Changing Switch S1's Buffer Size to One BDP -- 8.2 TCP Cubic -- 8.3 TCP Reno -- 8.4 TCP BBR -- 9 Emulating High-Latency WAN with Packet Loss -- 9.1 TCP Cubic -- 9.2 TCP Reno -- 9.3 TCP BBR -- Chapter 3-Lab 7: Router's Bufferbloat -- 10 Introduction to Bufferbloat -- 10.1 1.1 Packet Delays -- 10.2 Bufferbloat -- 11 Lab Topology -- 11.1 Starting Host h1, Host h2, and Host h3 -- 11.2 Emulating High-Latency WAN -- 11.3 Testing Connection -- 11.4 Testing Throughput on a Network with a Small Buffer-Size Switch -- 11.5 Setting Switch S1's Buffer Size to 100 · MTU -- 11.6 Bandwidth-Delay Product (BDP) and Hosts' Buffer Size -- 11.7 Throughput Test -- 12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch -- 12.1 Setting Switch S1's Buffer Size to 1 · BDP -- 12.2 Throughput and Latency Tests -- 13 Testing Throughput on a Network with a Large Buffer-Size Switch -- 13.1 Setting Switch S1's Buffer Size to 10 · BDP -- 13.2 Throughput and Latency Tests -- Chapter 3-Lab 8: Random Early Detection (RED) -- 14 Introduction -- 14.1 Random Early Detection Mechanism -- 15 Lab Topology.
15.1 Starting Host h1, Host h2, and Host h3 -- 15.2 Emulating High-Latency WAN -- 15.3 Testing Connection -- 16 Testing Throughput on a Network Using Drop Tail AQM Algorithm -- 16.1 Bandwidth-Delay Product (BDP) and Hosts' TCP Buffer Size -- 16.2 Setting Switch S2's Buffer Size to 10 · BDP -- 16.3 Throughput and Latency Tests -- 17 Configuring RED on Switch S2 -- 17.1 Setting RED Parameter on Switch S2's Egress Interface -- 17.2 Throughput and Latency Tests -- 17.3 Changing the Bandwidth to 100Mbps -- 17.4 Throughput and Latency Tests -- References -- Impact of TCP on High-Speed Networks and Advances in Congestion Control Algorithms -- 1 TCP Review -- 2 TCP Considerations for Science DMZs -- 2.1 Maximum Segment Size -- 2.2 Flow Control and TCP Receive Buffer -- 2.3 Selective Acknowledgment -- 2.4 Parallel TCP Connections -- 2.5 TCP Fair Queue Pacing -- 2.6 TCP Congestion Control Algorithms -- 3 Transport-Layer Issues in Enterprise Networks and Science DMZs -- 4 Academic Cloud and Virtual Laboratories -- 5 Chapter 4-Lab 9: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno) -- 6 Introduction to TCP -- 6.1 TCP Review -- 6.2 TCP Throughput -- 6.3 TCP Packet Loss Event -- 6.4 Impact of Packet Loss in High-Latency Networks -- 7 Lab Topology -- 7.1 Starting Host h1 and Host h2 -- 7.2 Emulating 10Gbps High-Latency WAN with Packet Loss -- 7.3 Testing Connection -- 8 Introduction to sysctl -- 8.1 Read sysctl Parameters -- 8.2 Write sysctl Parameters -- 8.3 Configuring sysctl.conf File -- 9 Congestion Control Algorithms and sysctl -- 9.1 Inspect and Install/Load Congestion Control Algorithms -- 9.2 Inspect the Default (Current) Congestion Control Algorithm -- 9.3 Modify the Default (Current) Congestion Control Algorithm -- 10 iPerf3 Throughput Test -- 10.1 Throughput Test Without Delay -- 10.2 TCP Reno -- 10.3 Hamilton TCP (HTCP).
10.4 TCP Cubic -- 10.5 Throughput Test with 30ms Delay -- 10.6 TCP Reno -- 10.7 Hamilton TCP (HTCP) -- 10.8 TCP Cubic -- 11 Chapter 4-Lab 10: Understanding Rate-Based TCP Congestion Control (BBR) -- 12 Introduction to TCP -- 12.1 Traditional TCP Congestion Control Review -- 12.2 Traditional Congestion Control Limitations -- 12.3 TCP BBR -- 13 Lab Topology -- 13.1 Starting Host h1 and Host h2 -- 13.2 Emulating 1Gbps High-Latency WAN with Packet Loss -- 13.3 Testing Connection -- 14 iPerf3 Throughput Test -- 14.1 Throughput Test Without Delay -- 14.1.1 TCP Reno -- 14.1.2 TCP BBR -- 14.2 Throughput Test with 30ms Delay -- 14.2.1 TCP Reno -- 14.2.2 TCP BBR -- 15 Chapter 4-Lab 11: Bandwidth-Delay Product and TCP Buffer Size -- 16 Introduction to TCP buffers, BDP, and TCP Window -- 16.1 TCP Buffers -- 16.2 Bandwidth-Delay Product -- 16.3 Practical Observations on Setting TCP Buffer Size -- 16.4 TCP Window Size Calculated Value -- 16.5 Zero Window -- 17 Lab Topology -- 17.1 Starting Host h1 and Host h2 -- 17.2 Emulating 10Gbps High-Latency WAN -- 18 BDP and Buffer Size -- 18.1 Window Size in sysctl -- 19 Modifying Buffer Size and Throughput Test -- 20 Chapter 4-Lab 12: Enhancing TCP Throughput with Parallel Streams -- 21 Introduction to TCP Parallel Streams -- 21.1 Parallel Stream Fundamentals -- 21.2 Advantages of Parallel Streams -- 22 Lab Topology -- 22.1 Starting Host h1 and Host h2 -- 22.2 Emulating 10Gbps High-Latency WAN -- 22.3 Testing Connection -- 23 Parallel Streams to Overcome TCP Buffer Limitation -- 24 Parallel Streams to Combat Packet Loss -- 24.1 Limit Rate and Add Packet Loss on Switch S1's s1-eth2 Interface -- 24.2 Test with Parallel Streams -- 25 Chapter 4-Lab 13: Measuring TCP Fairness -- 26 Fairness Concepts -- 26.1 TCP Bandwidth Allocation -- 26.2 TCP Fairness Index Calculation -- 27 Lab Topology -- 27.1 Starting Host h1 and Host h2.
27.2 Emulating 10Gbps High-Latency WAN.
Record Nr. UNISA-996472064703316
Crichigno Jorge  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
High-speed networks : a tutorial / / Jorge Crichigno [and three others]
High-speed networks : a tutorial / / Jorge Crichigno [and three others]
Autore Crichigno Jorge
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (471 pages)
Disciplina 004.6
Collana Practical Networking
Soggetto topico Computer networks
ISBN 3-030-88841-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Audience -- What is Unique About This Book? -- The Virtual Platform and Virtual Laboratory Experiments -- Organization -- Relevance of Networking Tools -- Acknowledgement -- Contents -- Abbreviations -- Introduction to High-Speed Networks and Science DMZ -- 1 Objective and Access to Accompanied Training Material -- 2 Motivation for Science DMZs -- 3 Science DMZs Applications -- Chapter 1-Lab 1: Introduction to Mininet -- 4 Introduction to Mininet -- 5 Invoking Mininet Using the CLI -- 5.1 Invoking Mininet Using the Default Topology -- 5.2 Testing Connectivity -- 6 Building and Emulating a Network in Mininet Using the GUI -- 6.1 Building the Network Topology -- 6.2 Testing Connectivity -- 6.3 Automatic Assignment of IP Addresses -- 6.4 Saving and Loading a Mininet Topology -- Chapter 1-Lab 2: Introduction to iPerf3 -- Lab Roadmap -- 7 Introduction to iPerf3 -- 8 Lab Topology -- 8.1 Starting Host h1 and Host h2 -- 9 Using iPerf3 (Client and Server Commands) -- 9.1 Starting Client and Server -- 9.2 Setting Transmitting Time Period -- 9.3 Setting Time Interval -- 9.4 Changing the Number of Bytes to Transmit -- 9.5 Specifying the Transport-Layer Protocol -- 9.6 Changing Port Number -- 9.7 Export Results to JSON File -- 9.8 Handle One Client -- 10 Plotting iPerf3 Results -- References -- Network Cyberinfrastructure Aspects for Big Data Transfers -- 1 Limitations of Enterprise Networks and Motivation for Science DMZs -- 2 Science DMZ Architecture -- 2.1 Addressing the Enterprise Network Limitations -- 3 WAN Cyberinfrastructure -- 3.1 Connecting a Science DMZ via an Internet2 POP -- 3.2 Connecting a Science DMZ via a Regional REN -- 3.3 Connecting a Science DMZ via a Commercial ISP -- 3.4 Connecting a Science DMZ via a Commercial ISP Circuit -- 4 Current State: Science DMZ Deployment in the U.S.
Chapter 2-Lab 3: Emulating WAN with NETEM Part I-Latency and Jitter -- 5 Introduction to Network Emulators and NETEM -- 5.1 NETEM -- 5.2 WANs and Delay -- 6 Lab Topology -- 6.1 Starting Host h1 and Host h2 -- 7 Adding/Changing Delay to Emulate a WAN -- 7.1 Identify Interface of Host h1 and Host h2 -- 7.2 Add Delay to Interface Connecting to WAN -- 7.3 Changing the Delay in Emulated WAN -- 8 Restoring Original Values (Deleting the Rules) -- 9 Adding Jitter to Emulated WAN -- 9.1 Add Jitter to Interface Connecting to WAN -- 10 Adding Correlation Value for Jitter and Delay -- 11 Delay Distribution -- Chapter 2-Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption -- 12 Introduction to Network Emulators and NETEM -- 13 Lab Topology -- 13.1 Testing Connectivity Between Two Hosts -- 14 Adding/Changing Packet Loss -- 14.1 Identify Interface of Host h1 and Host h2 -- 14.2 Add Packet Loss to the Interface Connecting to the WAN -- 14.3 Restore Default Values -- 14.4 Add Correlation Value for Packet Loss to Interface Connecting to WAN -- 15 Adding Packet Corruption -- 15.1 Add Packet Corruption to an Interface Connected to the WAN -- 16 Add Packet Reordering -- 17 Add Packet Duplication -- Chapter 2-Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF) -- 18 Introduction to Token Bucket Algorithm -- 19 Lab Topology -- 19.1 Starting Host h1 and Host h2 -- 20 Rate Limiting on End-Hosts -- 20.1 Identify Interface of Host h1 and Host h2 -- 20.2 Emulating 10Gbps High-Latency WAN -- 21 Rate Limiting on Switches -- 22 Combining NETEM and TBF -- References -- Data-Link and Network Layer Considerations for LargeData Transfers -- 1 Data-Link and Network-Layer Devices -- 2 Switching Review -- 3 Switching Considerations for Science DMZs -- 3.1 Traffic Profile -- 3.2 Maximum Transmission Unit.
3.3 Buffer Size of Output or Transmission Ports -- 3.4 Bufferbloat -- 3.5 Routers and Switches in a Hierarchical Network -- 4 Switches in Enterprise Networks and Science DMZs -- Chapter 3-Lab 6: Router's Buffer Size -- 5 Introduction -- 5.1 Introduction to Switching -- 5.2 Router Architecture -- 5.3 Where does Packet Loss Occur? -- 5.4 Buffer Size -- 6 Lab Topology -- 6.1 Starting Host h1, Host h2, Host h3, and Host h4 -- 6.2 Modifying Hosts' Buffer Size -- 6.3 Emulating High-Latency WAN -- 6.4 Testing Connection -- 7 Testing Throughput with 100 · MTU Switch's Buffer Size -- 7.1 Setting Switch S1's Buffer Size to 100 · MTU -- 7.2 TCP Cubic -- 7.3 TCP Reno -- 7.4 TCP BBR -- 8 Testing Throughput with One BDP Switch's Buffer Size -- 8.1 Changing Switch S1's Buffer Size to One BDP -- 8.2 TCP Cubic -- 8.3 TCP Reno -- 8.4 TCP BBR -- 9 Emulating High-Latency WAN with Packet Loss -- 9.1 TCP Cubic -- 9.2 TCP Reno -- 9.3 TCP BBR -- Chapter 3-Lab 7: Router's Bufferbloat -- 10 Introduction to Bufferbloat -- 10.1 1.1 Packet Delays -- 10.2 Bufferbloat -- 11 Lab Topology -- 11.1 Starting Host h1, Host h2, and Host h3 -- 11.2 Emulating High-Latency WAN -- 11.3 Testing Connection -- 11.4 Testing Throughput on a Network with a Small Buffer-Size Switch -- 11.5 Setting Switch S1's Buffer Size to 100 · MTU -- 11.6 Bandwidth-Delay Product (BDP) and Hosts' Buffer Size -- 11.7 Throughput Test -- 12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch -- 12.1 Setting Switch S1's Buffer Size to 1 · BDP -- 12.2 Throughput and Latency Tests -- 13 Testing Throughput on a Network with a Large Buffer-Size Switch -- 13.1 Setting Switch S1's Buffer Size to 10 · BDP -- 13.2 Throughput and Latency Tests -- Chapter 3-Lab 8: Random Early Detection (RED) -- 14 Introduction -- 14.1 Random Early Detection Mechanism -- 15 Lab Topology.
15.1 Starting Host h1, Host h2, and Host h3 -- 15.2 Emulating High-Latency WAN -- 15.3 Testing Connection -- 16 Testing Throughput on a Network Using Drop Tail AQM Algorithm -- 16.1 Bandwidth-Delay Product (BDP) and Hosts' TCP Buffer Size -- 16.2 Setting Switch S2's Buffer Size to 10 · BDP -- 16.3 Throughput and Latency Tests -- 17 Configuring RED on Switch S2 -- 17.1 Setting RED Parameter on Switch S2's Egress Interface -- 17.2 Throughput and Latency Tests -- 17.3 Changing the Bandwidth to 100Mbps -- 17.4 Throughput and Latency Tests -- References -- Impact of TCP on High-Speed Networks and Advances in Congestion Control Algorithms -- 1 TCP Review -- 2 TCP Considerations for Science DMZs -- 2.1 Maximum Segment Size -- 2.2 Flow Control and TCP Receive Buffer -- 2.3 Selective Acknowledgment -- 2.4 Parallel TCP Connections -- 2.5 TCP Fair Queue Pacing -- 2.6 TCP Congestion Control Algorithms -- 3 Transport-Layer Issues in Enterprise Networks and Science DMZs -- 4 Academic Cloud and Virtual Laboratories -- 5 Chapter 4-Lab 9: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno) -- 6 Introduction to TCP -- 6.1 TCP Review -- 6.2 TCP Throughput -- 6.3 TCP Packet Loss Event -- 6.4 Impact of Packet Loss in High-Latency Networks -- 7 Lab Topology -- 7.1 Starting Host h1 and Host h2 -- 7.2 Emulating 10Gbps High-Latency WAN with Packet Loss -- 7.3 Testing Connection -- 8 Introduction to sysctl -- 8.1 Read sysctl Parameters -- 8.2 Write sysctl Parameters -- 8.3 Configuring sysctl.conf File -- 9 Congestion Control Algorithms and sysctl -- 9.1 Inspect and Install/Load Congestion Control Algorithms -- 9.2 Inspect the Default (Current) Congestion Control Algorithm -- 9.3 Modify the Default (Current) Congestion Control Algorithm -- 10 iPerf3 Throughput Test -- 10.1 Throughput Test Without Delay -- 10.2 TCP Reno -- 10.3 Hamilton TCP (HTCP).
10.4 TCP Cubic -- 10.5 Throughput Test with 30ms Delay -- 10.6 TCP Reno -- 10.7 Hamilton TCP (HTCP) -- 10.8 TCP Cubic -- 11 Chapter 4-Lab 10: Understanding Rate-Based TCP Congestion Control (BBR) -- 12 Introduction to TCP -- 12.1 Traditional TCP Congestion Control Review -- 12.2 Traditional Congestion Control Limitations -- 12.3 TCP BBR -- 13 Lab Topology -- 13.1 Starting Host h1 and Host h2 -- 13.2 Emulating 1Gbps High-Latency WAN with Packet Loss -- 13.3 Testing Connection -- 14 iPerf3 Throughput Test -- 14.1 Throughput Test Without Delay -- 14.1.1 TCP Reno -- 14.1.2 TCP BBR -- 14.2 Throughput Test with 30ms Delay -- 14.2.1 TCP Reno -- 14.2.2 TCP BBR -- 15 Chapter 4-Lab 11: Bandwidth-Delay Product and TCP Buffer Size -- 16 Introduction to TCP buffers, BDP, and TCP Window -- 16.1 TCP Buffers -- 16.2 Bandwidth-Delay Product -- 16.3 Practical Observations on Setting TCP Buffer Size -- 16.4 TCP Window Size Calculated Value -- 16.5 Zero Window -- 17 Lab Topology -- 17.1 Starting Host h1 and Host h2 -- 17.2 Emulating 10Gbps High-Latency WAN -- 18 BDP and Buffer Size -- 18.1 Window Size in sysctl -- 19 Modifying Buffer Size and Throughput Test -- 20 Chapter 4-Lab 12: Enhancing TCP Throughput with Parallel Streams -- 21 Introduction to TCP Parallel Streams -- 21.1 Parallel Stream Fundamentals -- 21.2 Advantages of Parallel Streams -- 22 Lab Topology -- 22.1 Starting Host h1 and Host h2 -- 22.2 Emulating 10Gbps High-Latency WAN -- 22.3 Testing Connection -- 23 Parallel Streams to Overcome TCP Buffer Limitation -- 24 Parallel Streams to Combat Packet Loss -- 24.1 Limit Rate and Add Packet Loss on Switch S1's s1-eth2 Interface -- 24.2 Test with Parallel Streams -- 25 Chapter 4-Lab 13: Measuring TCP Fairness -- 26 Fairness Concepts -- 26.1 TCP Bandwidth Allocation -- 26.2 TCP Fairness Index Calculation -- 27 Lab Topology -- 27.1 Starting Host h1 and Host h2.
27.2 Emulating 10Gbps High-Latency WAN.
Record Nr. UNINA-9910564681703321
Crichigno Jorge  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)
Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)
Autore Crichigno Jorge
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (194 p.)
Soggetto non controllato similarity measure
dynamic time warping
Least Absolute Shrinkage and Selection Operator (LASSO)
multispectral information
transmission convergence layer
3D segmentation
micrographia
MATLAB
neural network
wireless communication
identification
interference alignment
Parkinson's disease dysgraphia
NG-PON2
timing
GPON
semantic segmentation
fractional-order filters
maximum likelihood criterion
kinematic analysis
multitemporal data
fractional calculus
multi-hop relay network
u-net
interference leakage
Richardson iteration
activation process
acoustic analysis
follow-up study
fractional-order derivative
electrocardiogram (ECG)
deep learning
security
modulo M quasi-stationary
cognitive radio
low-pass filters
time-interleaved analog-to-digital converter (TIADC)
sample-and-hold (S/H) mismatch
authentication
pattern recognition
online handwriting
sparse inference
Taylor series
EPON
open-source
spine
machine learning
brain
signal representation
magnitude responses
Chebyshev filters
XG-PON
phonation
hypokinetic dysarthria
Parkinson's disease
overcomplete multi-scale dictionary construction
ISBN 3-03921-041-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing
Record Nr. UNINA-9910674032703321
Crichigno Jorge  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui