Mechanics and physics of porous solids [[electronic resource] /] / Olivier Coussy |
Autore | Coussy Olivier |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010 |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 620.1/16 |
Soggetto topico |
Porous materials
Physics |
ISBN |
1-119-95616-1
1-282-68776-X 9786612687761 0-470-71038-1 0-470-71039-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | MECHANICS AND PHYSICS OF POROUS SOLIDS; Contents; Preface; 1 The Strange World of Porous Solids; 2 Fluid Mixtures; 3 The Deformable Porous Solid; 4 The Saturated Poroelastic Solid; 5 Fluid Transport and Deformation; 6 Surface Energy and Capillarity; 7 The Unsaturated Poroelastic Solid; 8 Unconfined Phase Transition; 9 Phase Transition in Porous Solids; 10 The Poroplastic Solid; 11 By Way of Conclusion; Further Reading; Index |
Record Nr. | UNINA-9910140575003321 |
Coussy Olivier | ||
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanics and physics of porous solids / / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010 |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 620.1/16 |
Soggetto topico |
Porous materials
Physics |
ISBN |
1-119-95616-1
1-282-68776-X 9786612687761 0-470-71038-1 0-470-71039-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | MECHANICS AND PHYSICS OF POROUS SOLIDS; Contents; Preface; 1 The Strange World of Porous Solids; 2 Fluid Mixtures; 3 The Deformable Porous Solid; 4 The Saturated Poroelastic Solid; 5 Fluid Transport and Deformation; 6 Surface Energy and Capillarity; 7 The Unsaturated Poroelastic Solid; 8 Unconfined Phase Transition; 9 Phase Transition in Porous Solids; 10 The Poroplastic Solid; 11 By Way of Conclusion; Further Reading; Index |
Record Nr. | UNINA-9910818795803321 |
Coussy Olivier | ||
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Poromechanics [[electronic resource] /] / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
620.1/1692
620.11692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNISA-996201061503316 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Poromechanics [[electronic resource] /] / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina |
620.1/1692
620.11692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNISA-996454749203316 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Poromechanics / / Olivier Coussy |
Autore | Coussy Olivier |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (314 p.) |
Disciplina | 620.1/1692 |
Altri autori (Persone) | CoussyOlivier |
Soggetto topico |
Porous materials - Mechanical properties
Porous materials - Mechanical properties - Mathematical models Continuum mechanics |
ISBN |
1-280-26936-7
9786610269365 0-470-09270-X 0-470-09271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Poromechanics; Contents; Preface; Acknowledgements; 1 Deformation and Kinematics. Mass Balance; 1.1 The Porous Medium and the Continuum Approach; 1.1.1 Connected and Occluded Porosity. The Matrix; 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis; 1.2 The Skeleton Deformation; 1.2.1 Deformation Gradient and Transport Formulae; 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio; 1.2.3 Strain Tensor; 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor; 1.3 Kinematics; 1.3.1 Particle Derivative; 1.3.2 Strain Rates; 1.4 Mass Balance; 1.4.1 Equation of Continuity
1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content 1.5 Advanced Analysis; 1.5.1 Particle Derivative with a Surface of Discontinuity; 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine-Hugoniot Jump Condition; 1.5.3 Mass Balance and the Double Porosity Network; 2 Momentum Balance. Stress Tensor; 2.1 Momentum Balance; 2.1.1 The Hypothesis of Local Forces; 2.1.2 The Momentum Balance; 2.1.3 The Dynamic Theorem; 2.2 The Stress Tensor; 2.2.1 Action-Reaction Law; 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor; 2.3 Equation of Motion 2.3.1 The Local Dynamic Resultant Theorem 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor; 2.3.3 Partial Stress Tensor; 2.4 Kinetic Energy Theorem; 2.4.1 Strain Work Rates; 2.4.2 Piola-Kirchhoff Stress Tensor; 2.4.3 Kinetic Energy Theorem; 2.5 Advanced Analysis; 2.5.1 The Stress Partition Theorem; 2.5.2 Momentum Balance and the Double Porosity Network; 2.5.3 The Tortuosity Effect; 3 Thermodynamics; 3.1 Thermostatics of Homogeneous Fluids; 3.1.1 Energy Conservation and Entropy Balance; 3.1.2 Fluid State Equations. Gibbs Potential; 3.2 Thermodynamics of Porous Continua 3.2.1 Postulate of Local State 3.2.2 The First Law; 3.2.3 The Second Law; 3.3 Conduction Laws; 3.3.1 Darcy's Law; 3.3.2 Fourier's Law; 3.4 Constitutive Equations of the Skeleton; 3.4.1 State Equations of the Skeleton; 3.4.2 Complementary Evolution Laws; 3.5 Recapitulating the Laws; 3.6 Advanced Analysis; 3.6.1 Fluid Particle Head. Bernoulli Theorem; 3.6.2 Thermodynamics and the Double Porosity Network; 3.6.3 Chemically Active Porous Continua; 4 Thermoporoelasticity; 4.1 Non-linear Thermoporoelastic Skeleton; 4.1.1 Infinitesimal Transformation and State Equations 4.1.2 Tangent Thermoporoelastic Properties 4.1.3 The Incompressible Matrix and the Effective Stress; 4.2 Linear Thermoporoelastic Skeleton; 4.2.1 Linear Thermoporoelasticity; 4.2.2 Isotropic Linear Thermoporoelasticity; 4.2.3 Relations Between Skeleton and Matrix Properties; 4.2.4 Anisotropic Poroelasticity; 4.3 Thermoporoelastic Porous Material; 4.3.1 Constitutive Equations of the Saturating Fluid; 4.3.2 Constitutive Equations of the Porous Material; 4.4 Advanced Analysis; 4.4.1 Non-linear Isotropic Poroelasticity; 4.4.2 Brittle Fracture of Fluid-infiltrated Materials 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures |
Record Nr. | UNINA-9910143228203321 |
Coussy Olivier | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|