Chemical engineering design [[electronic resource] /] / R.K. Sinnott |
Autore | Sinnott R. K |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Oxford, : Elsevier Butterworth-Heinemann, 2005 |
Descrizione fisica | 1 online resource (1065 p.) |
Disciplina | 660 |
Altri autori (Persone) |
CoulsonJ. M (John Metcalfe)
RichardsonJ. F (John Francis) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Engineering |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-94863-9
9786610948635 0-08-049255-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Copyright; Table of Contents; Preface to Fourth Edition; Preface to Third Edition; Preface to Second Edition; Preface to First Edition; Series Editor's Preface; Acknowledgement; 1 Introduction to Design; 1.1. INTRODUCTION; 1.2. NATURE OF DESIGN; 1.2.1. The design objective (the need); 1.2.2. Data collection; 1.2.3. Generation of possible design solutions; 1.2.4. Selection; 1.3. THE ANATOMY OF A CHEMICAL MANUFACTURING PROCESS; 1.3.1. Continuous and batch processes; 1.4. THE ORGANISATION OF A CHEMICAL ENGINEERING PROJECT; 1.5. PROJECT DOCUMENTATION; 1.6. CODES AND STANDARDS
1.7. FACTORS OF SAFETY (DESIGN FACTORS)1.8. SYSTEMS OF UNITS; 1.9. DEGREES OF FREEDOM AND DESIGN VARIABLES. THE MATHEMATICAL REPRESENTATION OF THE DESIGN PROBLEM; 1.9.1. Information flow and design variables; 1.9.2. Selection of design variables; 1.9.3. Information flow and the structure of design problems; 1.10. OPTIMISATION; 1.10.1. General procedure; 1.10.2. Simple models; Example 1.1; 1.10.3. Multiple variable problems; 1.10.4. Linear programming; 1.10.5. Dynamic programming; 1.10.6. Optimisation of batch and semicontinuous processes; 1.11 REFERENCES; 1.12 NOMENCLATURE; 1.13 PROBLEMS 2 Fundamentals of Material Balances2.1. INTRODUCTION; 2.2. THE EQUIVALENCE OF MASS AND ENERGY; 2.3. CONSERVATION OF MASS; Example 2.1; 2.4. UNITS USED TO EXPRESS COMPOSITIONS; Example 2.2; 2.5. STOICHIOMETRY; Example 2.3; 2.6. CHOICE OF SYSTEM BOUNDARY; Example 2.4; 2.7. CHOICE OF BASIS FOR CALCULATIONS; 2.8. NUMBER OF INDEPENDENT COMPONENTS; Example 2.5; 2.9. CONSTRAINTS ON FLOWS AND COMPOSITIONS; Example 2.6; 2.10. GENERAL ALGEBRAIC METHOD; 2.11. TIE COMPONENTS; Example 2.7; Example 2.8; 2.12. EXCESS REAGENT; Example 2.9; 2.13. CONVERSION AND YIELD; Example 2.10; Example 2.11; Example 2.12 2.14. RECYCLE PROCESSESExample 2.13; 2.15. PURGE; Example 2.14; 2.16. BY-PASS; 2.17. UNSTEADY-STATE CALCULATIONS; Example 2.15; 2.18. GENERAL PROCEDURE FOR MATERIAL-BALANCE PROBLEMS; 2.19. REFERENCES (FURTHER READING); 2.20. NOMENCLATURE; 2.21. PROBLEMS; 3 Fundamentals of Energy Balances (and Energy Utilisation); 3.1. INTRODUCTION; 3.2. CONSERVATION OF ENERGY; 3.3. FORMS OF ENERGY (PER UNIT MASS OF MATERIAL); 3.3.1. Potential energy; 3.3.2. Kinetic energy; 3.3.3. Internal energy; 3.3.4. Work; 3.3.5. Heat; 3.3.6. Electrical energy; 3.4. THE ENERGY BALANCE; Example 3.1 3.5. CALCULATION OF SPECIFIC ENTHALPYExample 3.2; 3.6. MEAN HEAT CAPACITIES; Example 3.3; 3.7. THE EFFECT OF PRESSURE ON HEAT CAPACITY; Example 3.4; 3.8. ENTHALPY OF MIXTURES; 3.8.1. Integral heats of solution; Example 3.5; 3.9. ENTHALPY-CONCENTRATION DIAGRAMS; Example 3.6; 3.10. HEATS OF REACTION; 3.10.1. Effect of pressure on heats of reaction; Example 3.7; 3.11. STANDARD HEATS OF FORMATION; Example 3.8; 3.12. HEATS OF COMBUSTION; Example 3.9; 3.13. COMPRESSION AND EXPANSION OF GASES; 3.13.1. Mollier diagrams; Example 3.10; 3.13.2. Polytropic compression and expansion; Example 3.11 3.13.3. Multistage compressors |
Record Nr. | UNINA-9910457675803321 |
Sinnott R. K | ||
Oxford, : Elsevier Butterworth-Heinemann, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chemical engineering design [[electronic resource] /] / R.K. Sinnott |
Autore | Sinnott R. K |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Oxford, : Elsevier Butterworth-Heinemann, 2005 |
Descrizione fisica | 1 online resource (1065 p.) |
Disciplina | 660 |
Altri autori (Persone) |
CoulsonJ. M (John Metcalfe)
RichardsonJ. F (John Francis) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Engineering |
ISBN | 9780080492551 (Electronic Book) |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Copyright; Table of Contents; Preface to Fourth Edition; Preface to Third Edition; Preface to Second Edition; Preface to First Edition; Series Editor's Preface; Acknowledgement; 1 Introduction to Design; 1.1. INTRODUCTION; 1.2. NATURE OF DESIGN; 1.2.1. The design objective (the need); 1.2.2. Data collection; 1.2.3. Generation of possible design solutions; 1.2.4. Selection; 1.3. THE ANATOMY OF A CHEMICAL MANUFACTURING PROCESS; 1.3.1. Continuous and batch processes; 1.4. THE ORGANISATION OF A CHEMICAL ENGINEERING PROJECT; 1.5. PROJECT DOCUMENTATION; 1.6. CODES AND STANDARDS
1.7. FACTORS OF SAFETY (DESIGN FACTORS)1.8. SYSTEMS OF UNITS; 1.9. DEGREES OF FREEDOM AND DESIGN VARIABLES. THE MATHEMATICAL REPRESENTATION OF THE DESIGN PROBLEM; 1.9.1. Information flow and design variables; 1.9.2. Selection of design variables; 1.9.3. Information flow and the structure of design problems; 1.10. OPTIMISATION; 1.10.1. General procedure; 1.10.2. Simple models; Example 1.1; 1.10.3. Multiple variable problems; 1.10.4. Linear programming; 1.10.5. Dynamic programming; 1.10.6. Optimisation of batch and semicontinuous processes; 1.11 REFERENCES; 1.12 NOMENCLATURE; 1.13 PROBLEMS 2 Fundamentals of Material Balances2.1. INTRODUCTION; 2.2. THE EQUIVALENCE OF MASS AND ENERGY; 2.3. CONSERVATION OF MASS; Example 2.1; 2.4. UNITS USED TO EXPRESS COMPOSITIONS; Example 2.2; 2.5. STOICHIOMETRY; Example 2.3; 2.6. CHOICE OF SYSTEM BOUNDARY; Example 2.4; 2.7. CHOICE OF BASIS FOR CALCULATIONS; 2.8. NUMBER OF INDEPENDENT COMPONENTS; Example 2.5; 2.9. CONSTRAINTS ON FLOWS AND COMPOSITIONS; Example 2.6; 2.10. GENERAL ALGEBRAIC METHOD; 2.11. TIE COMPONENTS; Example 2.7; Example 2.8; 2.12. EXCESS REAGENT; Example 2.9; 2.13. CONVERSION AND YIELD; Example 2.10; Example 2.11; Example 2.12 2.14. RECYCLE PROCESSESExample 2.13; 2.15. PURGE; Example 2.14; 2.16. BY-PASS; 2.17. UNSTEADY-STATE CALCULATIONS; Example 2.15; 2.18. GENERAL PROCEDURE FOR MATERIAL-BALANCE PROBLEMS; 2.19. REFERENCES (FURTHER READING); 2.20. NOMENCLATURE; 2.21. PROBLEMS; 3 Fundamentals of Energy Balances (and Energy Utilisation); 3.1. INTRODUCTION; 3.2. CONSERVATION OF ENERGY; 3.3. FORMS OF ENERGY (PER UNIT MASS OF MATERIAL); 3.3.1. Potential energy; 3.3.2. Kinetic energy; 3.3.3. Internal energy; 3.3.4. Work; 3.3.5. Heat; 3.3.6. Electrical energy; 3.4. THE ENERGY BALANCE; Example 3.1 3.5. CALCULATION OF SPECIFIC ENTHALPYExample 3.2; 3.6. MEAN HEAT CAPACITIES; Example 3.3; 3.7. THE EFFECT OF PRESSURE ON HEAT CAPACITY; Example 3.4; 3.8. ENTHALPY OF MIXTURES; 3.8.1. Integral heats of solution; Example 3.5; 3.9. ENTHALPY-CONCENTRATION DIAGRAMS; Example 3.6; 3.10. HEATS OF REACTION; 3.10.1. Effect of pressure on heats of reaction; Example 3.7; 3.11. STANDARD HEATS OF FORMATION; Example 3.8; 3.12. HEATS OF COMBUSTION; Example 3.9; 3.13. COMPRESSION AND EXPANSION OF GASES; 3.13.1. Mollier diagrams; Example 3.10; 3.13.2. Polytropic compression and expansion; Example 3.11 3.13.3. Multistage compressors |
Record Nr. | UNINA-9910784450103321 |
Sinnott R. K | ||
Oxford, : Elsevier Butterworth-Heinemann, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chemical engineering design / / R.K. Sinnott |
Autore | Sinnott R. K |
Edizione | [4th ed.] |
Pubbl/distr/stampa | Oxford, : Elsevier Butterworth-Heinemann, 2005 |
Descrizione fisica | 1 online resource (1065 p.) |
Disciplina | 660 |
Altri autori (Persone) |
CoulsonJ. M (John Metcalfe)
RichardsonJ. F (John Francis) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Engineering |
ISBN | 9780080492551 (Electronic Book) |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Copyright; Table of Contents; Preface to Fourth Edition; Preface to Third Edition; Preface to Second Edition; Preface to First Edition; Series Editor's Preface; Acknowledgement; 1 Introduction to Design; 1.1. INTRODUCTION; 1.2. NATURE OF DESIGN; 1.2.1. The design objective (the need); 1.2.2. Data collection; 1.2.3. Generation of possible design solutions; 1.2.4. Selection; 1.3. THE ANATOMY OF A CHEMICAL MANUFACTURING PROCESS; 1.3.1. Continuous and batch processes; 1.4. THE ORGANISATION OF A CHEMICAL ENGINEERING PROJECT; 1.5. PROJECT DOCUMENTATION; 1.6. CODES AND STANDARDS
1.7. FACTORS OF SAFETY (DESIGN FACTORS)1.8. SYSTEMS OF UNITS; 1.9. DEGREES OF FREEDOM AND DESIGN VARIABLES. THE MATHEMATICAL REPRESENTATION OF THE DESIGN PROBLEM; 1.9.1. Information flow and design variables; 1.9.2. Selection of design variables; 1.9.3. Information flow and the structure of design problems; 1.10. OPTIMISATION; 1.10.1. General procedure; 1.10.2. Simple models; Example 1.1; 1.10.3. Multiple variable problems; 1.10.4. Linear programming; 1.10.5. Dynamic programming; 1.10.6. Optimisation of batch and semicontinuous processes; 1.11 REFERENCES; 1.12 NOMENCLATURE; 1.13 PROBLEMS 2 Fundamentals of Material Balances2.1. INTRODUCTION; 2.2. THE EQUIVALENCE OF MASS AND ENERGY; 2.3. CONSERVATION OF MASS; Example 2.1; 2.4. UNITS USED TO EXPRESS COMPOSITIONS; Example 2.2; 2.5. STOICHIOMETRY; Example 2.3; 2.6. CHOICE OF SYSTEM BOUNDARY; Example 2.4; 2.7. CHOICE OF BASIS FOR CALCULATIONS; 2.8. NUMBER OF INDEPENDENT COMPONENTS; Example 2.5; 2.9. CONSTRAINTS ON FLOWS AND COMPOSITIONS; Example 2.6; 2.10. GENERAL ALGEBRAIC METHOD; 2.11. TIE COMPONENTS; Example 2.7; Example 2.8; 2.12. EXCESS REAGENT; Example 2.9; 2.13. CONVERSION AND YIELD; Example 2.10; Example 2.11; Example 2.12 2.14. RECYCLE PROCESSESExample 2.13; 2.15. PURGE; Example 2.14; 2.16. BY-PASS; 2.17. UNSTEADY-STATE CALCULATIONS; Example 2.15; 2.18. GENERAL PROCEDURE FOR MATERIAL-BALANCE PROBLEMS; 2.19. REFERENCES (FURTHER READING); 2.20. NOMENCLATURE; 2.21. PROBLEMS; 3 Fundamentals of Energy Balances (and Energy Utilisation); 3.1. INTRODUCTION; 3.2. CONSERVATION OF ENERGY; 3.3. FORMS OF ENERGY (PER UNIT MASS OF MATERIAL); 3.3.1. Potential energy; 3.3.2. Kinetic energy; 3.3.3. Internal energy; 3.3.4. Work; 3.3.5. Heat; 3.3.6. Electrical energy; 3.4. THE ENERGY BALANCE; Example 3.1 3.5. CALCULATION OF SPECIFIC ENTHALPYExample 3.2; 3.6. MEAN HEAT CAPACITIES; Example 3.3; 3.7. THE EFFECT OF PRESSURE ON HEAT CAPACITY; Example 3.4; 3.8. ENTHALPY OF MIXTURES; 3.8.1. Integral heats of solution; Example 3.5; 3.9. ENTHALPY-CONCENTRATION DIAGRAMS; Example 3.6; 3.10. HEATS OF REACTION; 3.10.1. Effect of pressure on heats of reaction; Example 3.7; 3.11. STANDARD HEATS OF FORMATION; Example 3.8; 3.12. HEATS OF COMBUSTION; Example 3.9; 3.13. COMPRESSION AND EXPANSION OF GASES; 3.13.1. Mollier diagrams; Example 3.10; 3.13.2. Polytropic compression and expansion; Example 3.11 3.13.3. Multistage compressors |
Record Nr. | UNINA-9910825107003321 |
Sinnott R. K | ||
Oxford, : Elsevier Butterworth-Heinemann, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coulson & Richardson's chemical engineering . Vol. 3a Chemical and biochemical reactors and reaction engineering / / edited by R. Ravi, R. Vinu, S. N. Gummadi |
Edizione | [4th edition.] |
Pubbl/distr/stampa | Oxford : , : Butterworth-Heinemann, , 2017 |
Descrizione fisica | 1 online resource (598 pages) : illustrations |
Disciplina | 660 |
Altri autori (Persone) | CoulsonJ. M (John Metcalfe) |
Soggetto topico |
Chemical engineering
Bioreactors |
ISBN |
0-08-101223-3
0-08-101096-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover -- Coulson and Richardson's Chemical Engineering -- Coulson & Richardson's Chemical Engineering -- Coulson and Richardson's Chemical Engineering: Volume 3A: Chemical and Biochemical Reactors and Reaction Engineering -- Copyright -- Contents -- List of Contributors -- About Prof. Coulson -- About Prof. Richardson -- Preface -- Introduction -- 1 - Reactor Design-General Principles -- 1.1 Basic Objectives in Design of a Reactor -- 1.1.1 By-products and Their Economic Importance -- 1.1.2 Preliminary Appraisal of a Reactor Project -- 1.2 Classification of Reactors and Choice of Reactor Type -- 1.2.1 Homogeneous and Heterogeneous Reactors -- 1.2.2 Batch Reactors and Continuous Reactors -- 1.2.3 Variations in Contacting Pattern-Semibatch Operation -- 1.2.4 Influence of Heat of Reaction on Reactor Type -- 1.2.4.1 Adiabatic Reactors -- 1.2.4.2 Reactors With Heat Transfer -- 1.2.4.3 Autothermal Reactor Operation -- 1.3 Choice of Process Conditions -- 1.3.1 Chemical Equilibria and Chemical Kinetics -- 1.3.2 Calculation of Equilibrium Conversion -- 1.3.3 Ultimate Choice of Reactor Conditions -- 1.4 Material and Energy Balances -- 1.4.1 Material Balance and the Concept of Rate of Generation of a Species -- 1.4.2 Energy Balance -- 1.5 Chemical Kinetics and Rate Equations -- 1.5.1 Definition of Order of Reaction and Rate Constant -- 1.5.2 Influence of Temperature: Activation Energy -- 1.5.3 Rate Equations and Reaction Mechanism -- 1.5.4 Reversible Reactions -- 1.5.5 Experimental Determination of Kinetic Constants -- 1.6 Batch Reactors -- 1.6.1 Calculation of Reaction Time: Basic Design Equation -- 1.6.2 Reaction Time-Isothermal Operation -- 1.6.3 Maximum Production Rate -- 1.6.4 Reaction Time-Nonisothermal Operation -- 1.6.5 Adiabatic Operation -- 1.6.6 Kinetics From Batch Reactor Data -- 1.6.6.1 Differential Method -- 1.6.6.2 Integral Method.
1.6.6.3 Differential Versus Integral Method: Comparison -- 1.6.6.4 Fractional Life Method -- 1.6.6.5 Kinetics of Gas-Phase Reactions From Pressure Measurements -- 1.7 Tubular Flow Reactors -- 1.7.1 Basic Design Equations for a Tubular Reactor -- 1.7.2 Tubular Reactors-Nonisothermal Operation -- 1.7.3 Pressure Drop in Tubular Reactors -- 1.7.4 Kinetic Data From Tubular Reactors -- 1.8 Continuous Stirred Tank Reactors -- 1.8.1 Assumption of Ideal Mixing: Residence Time -- 1.8.2 Design Equations for Continuous Stirred Tank Reactors -- 1.8.3 Graphical Methods -- 1.8.4 Autothermal Operation -- 1.8.5 Kinetic Data From Continuous Stirred Tank Reactors -- 1.9 Comparison of Batch, Tubular, and Stirred Tank Reactors for a Single Reaction: Reactor Output -- 1.9.1 Batch Reactor and Tubular Plug Flow Reactor -- 1.9.2 Continuous Stirred Tank Reactor -- 1.9.2.1 One Tank -- 1.9.2.2 Two Tanks -- 1.9.3 Comparison of Reactors -- 1.10 Comparison of Batch, Tubular, and Stirred Tank Reactors for Multiple Reactions: Reactor Yield -- 1.10.1 Types of Multiple Reactions -- 1.10.2 Yield and Selectivity -- 1.10.3 Reactor Type and Backmixing -- 1.10.4 Reactions in Parallel -- 1.10.4.1 Requirements for High Yield -- 1.10.4.1.1 Reactant Concentration and Reactor Type -- 1.10.4.1.2 Pressure in Gas-Phase Reactions -- 1.10.4.1.3 Temperature of Operation -- 1.10.4.1.4 Choice of Catalyst -- 1.10.4.2 Yield and Reactor Output -- 1.10.5 Reactions in Parallel-Two Reactants -- 1.10.6 Reactions in Series -- 1.10.6.1 Batch Reactor or Tubular Plug Flow Reactor -- 1.10.6.2 Continuous Stirred Tank Reactor-One Tank -- 1.10.6.3 Reactor Comparison and Conclusions -- 1.10.6.3.1 Reactor Type -- 1.10.6.3.2 Conversion in Reactor -- 1.10.6.3.3 Temperature -- 1.10.6.3.4 General Conclusions -- 1.10.7 Reactions in Series-Two Reactants -- 1.11 Appendix: Simplified Energy Balance Equations for Flow Reactors. Nomenclature -- References -- Further Reading -- 2 - Flow Characteristics of Reactors-Flow Modeling -- 2.1 Nonideal Flow and Residence Time Distribution -- 2.1.1 Types of Nonideal Flow Patterns -- 2.1.2 Residence Time Distribution: Basic Concepts and Definitions -- 2.1.3 Experimental Determination of E(t) and F(t) -- 2.1.3.1 The Convolution Formula -- 2.1.3.2 Step and Impulse Responses -- 2.1.4 E and F Functions for Ideal Reactors -- 2.1.4.1 Continuous Stirred Tank Reactor -- 2.1.4.2 Plug Flow Reactor -- 2.1.5 Statistics of Residence Time Distribution -- 2.1.6 Application of Tracer Information to Reactors -- 2.2 Zero-Parameter Models-Complete Segregation and Maximum Mixedness Models -- 2.2.1 Special Case of First-Order Reactions: Equivalence of the Segregated and Maximum Mixedness Models -- 2.2.2 PFR and Zero-Parameter Models -- 2.2.3 Residence Time Distribution of the CSTR and the Zero-Parameter Models -- 2.2.4 Bounds on Conversion: Some General Rules -- 2.2.4.1 Zero-Order Kinetics -- 2.2.4.2 First-Order Kinetics -- 2.2.4.3 Second-Order Kinetics -- 2.3 Tanks-in-Series Model -- 2.3.1 Predicting Reactor Conversion From Tanks-in-Series Model -- 2.4 Dispersed Plug Flow Model -- 2.4.1 Axial Dispersion and Model Development -- 2.4.2 Basic Differential Equation -- 2.4.3 Response to an Ideal Pulse Input of Tracer -- 2.4.4 Experimental Determination of Dispersion Coefficient From a Pulse Input -- 2.4.4.1 Many Equally Spaced Points -- 2.4.4.2 Relatively Few Data Points but Each Concentration Ci Measured Instantaneously at Time ti () -- 2.4.4.3 Data Collected by a "Mixing Cup" -- 2.4.5 Further Development of Tracer Injection Theory -- 2.4.5.1 Significance of the Boundary Conditions -- 2.4.5.2 Dispersion Coefficients From Nonideal Pulse Data -- 2.4.5.3 Pulse of Tracer Moving Through a Series of Vessels. 2.4.6 Values of Dispersion Coefficients From Theory and Experiment -- 2.4.7 Dispersed Plug Flow Model With First-Order Chemical Reaction -- 2.4.7.1 Case of Small DL/uL -- 2.4.7.2 Comparison With a Simple Plug Flow Reactor -- 2.4.8 Applications and Limitations of the Dispersed Plug Flow Model -- 2.5 Models Involving Combinations of the Basic Flow Elements -- Nomenclature -- References -- 3 - Gas-Solid Reactions and Reactors -- 3.1 Introduction -- 3.2 Mass Transfer Within Porous Solids -- 3.2.1 The Effective Diffusivity -- 3.2.1.1 The Molecular Flow Region -- 3.2.1.2 The Knudsen Flow Region -- 3.2.1.3 The Transition Region -- 3.2.1.4 Forced Flow in Pores -- 3.3 Chemical Reaction in Porous Catalyst Pellets -- 3.3.1 Isothermal Reactions in Porous Catalyst Pellets -- 3.3.2 Effect of Intraparticle Diffusion on Experimental Parameters -- 3.3.3 Nonisothermal Reactions in Porous Catalyst Pellets -- 3.3.4 Criteria for Diffusion Control -- 3.3.5 Selectivity in Catalytic Reactions Influenced by Mass and Heat Transfer Effects -- 3.3.5.1 Isothermal Conditions -- 3.3.5.2 Nonisothermal Conditions -- 3.3.5.3 Selectivity of Bifunctional Catalysts -- 3.3.6 Catalyst Deactivation and Poisoning -- 3.4 Mass Transfer From a Fluid Stream to a Solid Surface -- 3.5 Chemical Kinetics of Heterogeneous Catalytic Reactions -- 3.5.1 Adsorption of a Reactant as the Rate-Determining Step -- 3.5.2 Surface Reaction as the Rate-Determining Step -- 3.5.3 Desorption of a Product as the Rate-Determining Step -- 3.5.4 Rate-Determining Steps for Other Mechanisms -- 3.5.5 Examples of Rate Equations for Industrially Important Reactions -- 3.5.6 Mechanism of Catalyst Poisoning -- 3.6 Design Calculations -- 3.6.1 Packed Tubular Reactors -- 3.6.1.1 Behavior of Reactors in the Absence of Dispersion -- 3.6.1.1.1 Isothermal Conditions -- 3.6.1.1.2 Adiabatic Conditions. 3.6.1.1.3 Nonisothermal and Nonadiabatic Conditions -- 3.6.1.2 Dispersion in Packed Bed Reactors -- 3.6.1.2.1 The Nature of Dispersion -- 3.6.1.2.2 Axial Dispersion -- 3.6.1.2.3 Axial and Radial dispersion-Nonisothermal Conditions -- 3.6.2 Thermal Characteristics of Packed Reactors -- 3.6.2.1 Sensitivity of Countercurrent Cooled Reactors -- 3.6.2.2 The Autothermal Region -- 3.6.2.3 Stability of Packed Bed Tubular Reactors -- 3.6.3 Fluidized Bed Reactors -- 3.7 Gas-Solid Noncatalytic Reactors -- 3.7.1 Modeling and Design of Gas-Solid Reactors -- 3.7.2 Single Particle Unreacted Core Models -- 3.7.2.1 Unreacted Core Model-Chemical Reaction Control -- 3.7.2.2 Unreacted Core Model-Gas Film Control -- 3.7.2.3 Unreacted Core Model-Solid Product Layer Control -- 3.7.2.4 Limitations of Simple Models-Solids Structure -- 3.7.2.5 Shrinking Particles and Film Growth -- 3.7.3 Types of Equipment and Contacting Patterns -- 3.7.3.1 Fluidized Bed Reactor -- Nomenclature -- References -- Further Reading -- 4 - Gas-Liquid and Gas-Liquid-Solid Reactors -- 4.1 Gas-Liquid Reactors -- 4.1.1 Gas-Liquid Reactions -- 4.1.2 Types of Reactors -- 4.1.3 Rate Equations for Mass Transfer With Chemical Reaction -- 4.1.3.1 Rate of Transformation of A per Unit Volume of Reactor -- 4.1.3.1.1 Region I: β 2 -- 4.1.3.1.2 Region II: 0.02<β<2 -- 4.1.3.1.3 Region III: β<0.02 -- 4.1.4 Choice of a Suitable Reactor -- 4.1.5 Information Required for Gas-Liquid Reactor Design -- 4.1.5.1 Kinetic Constants of the Reaction -- 4.1.5.2 Physical Properties of the Gas and Liquid -- 4.1.5.3 Equipment Characteristics -- 4.1.6 Examples of Gas-Liquid Reactors -- 4.1.6.1 Packed Column Reactors -- 4.1.6.1.1 Height of Packing -- 4.1.6.1.2 Confirmation of Pseudo-First-Order Behavior -- 4.1.6.1.3 Further Comments -- 4.1.6.2 Agitated Tank Reactors: Flow Patterns of Gas and Liquid -- 4.1.6.2.1 Further Comments. 4.1.6.3 Well-Mixed Bubble Column Reactors: Gas-Liquid Flow Patterns and Mass Transfer. |
Record Nr. | UNINA-9910583035203321 |
Oxford : , : Butterworth-Heinemann, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coulson & Richardson's chemical engineering . Vol. 2 Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst |
Autore | Richardson J. F (John Francis) |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Oxford, : Butterworth-Heinemann, 2002 |
Descrizione fisica | 1 online resource (1183 pages.) |
Disciplina |
660
660.2 |
Altri autori (Persone) |
HarkerJ. H <1937-> (John Hadlett)
BackhurstJ. R CoulsonJ. M (John Metcalfe) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Particles |
ISBN |
1-280-94356-4
9786610943562 0-08-049064-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; Acknowledgements; Introduction; Chapter 1. Particulate Solids; 1.1 Introduction; 1.2 Particle characterisation; 1.3 Particulate solids in bulk; 1.4 Blending of solid particles; 1.5 Classification of solid particles; 1.6 Separation of suspended solid particles from fluids; 1.7 Further reading; 1.8 References; 1.9 Nomenclature; Chapter 2. Particle size reduction and enlargement; 2.1 Introduction; 2.2 Size reduction of solids; 2.3 Types of crushing equipment; 2.4 Size enlargement of particles; 2.5 Further reading; 2.6 References; 2.7 Nomenclature
Chapter 3. Motion of particles in a fluid3.1 Introduction; 3.2 Flow past a cylinder and a sphere; 3.3 The drag force on a spherical particle; 3.4 Non-spherical particles; 3.5 Motion of bubbles and drops; 3.6 Drag forces and settling velocities for particles in non-Newtonian Fluids; 3.7 Accelerating motion of a particle in the gravitational Field; 3.8 Motion of particles in a centrifugal Field; 3.9 Further reading; 3.10 References; 3.11 Nomenclature; Chapter 4. Flow of fluids through granular beds and packed columns; 4.1 Introduction; 4.2 Flow of a single fluid through a granular bed 4.3 Dispersion4.4 Heat transfer in packed beds; 4.5 Packed columns; 4.6 Further reading; 4.7 References; 4.8 Nomenclature; Chapter 5. Sedimentation; 5.1 Introduction; 5.2 Sedimentation of Fine particles; 5.3 Sedimentation of coarse particles; 5.4 Further reading; 5.5 References; 5.6 Nomenclature; Chapter 6. Fluidisation; 6.1 Characteristics of fluidised systems; 6.2 Liquid-solids systems; 6.3 Gas-solids systems; 6.4 Gas-liquid-solids fluidised beds; 6.5 Heat transfer to a boundary surface; 6.6 Mass and heat transfer between fluid and particles; 6.7 Summary of the properties of fluidised beds 6.8 Applications of the fluidised solids technique6.9 Further reading; 6.10 References; 6.11 Nomenclature; Chapter 7. Liquid filtration; 7.1 Introduction; 7.2 Filtration theory; 7.3 Filtration practice; 7.4 Filtration equipment; 7.5 Further reading; 7.6 References; 7.7 Nomenclature; Chapter 8. Membrane separation processes; 8.1 Introduction; 8.2 Classification of membrane processes; 8.3 The nature of synthetic membranes; 8.4 General membrane equation; 8.5 Cross-flow microfitration; 8.6 Ultrafiltration; 8.7 Reverse osmosis; 8.8 Membrane modules and plant configuration; 8.9 Membrane fouling 8.10 Electrodialysis8.11 Reverse osmosis water treatment plant; 8.12 Pervaporation; 8.13 Liquid membranes; 8.14 Gas separations; 8.15 Further reading; 8.16 References; 8.17 Nomenclature; Chapter 9. Centrifugal separations; 9.1 Introduction; 9.2 Shape of the free surface of the liquid; 9.3 Centrifugal pressure; 9.4 Separation of immiscible liquids of different densities; 9.5 Sedimentation in a centrifugal field; 9.6 Filtration in a centrifuge; 9.7 Mechanical design; 9.8 Centrifugal equipment; 9.9 Further reading; 9.10 References; 9.11 Nomenclature; Chapter 10. Leaching; 10.1 Introduction 10.2 Mass transfer in leaching operations |
Altri titoli varianti |
Particle technology and separation processes
Chemical engineering |
Record Nr. | UNINA-9910780209503321 |
Richardson J. F (John Francis) | ||
Oxford, : Butterworth-Heinemann, 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coulson & Richardson's chemical engineering . Vol. 1B Heat and mass transfer : fundamentals and applications / / Raj Chhabra, V. Shankar |
Edizione | [7th edition.] |
Pubbl/distr/stampa | Oxford : , : Butterworth-Heinemann, , 2018 |
Descrizione fisica | 1 online resource (631 pages) : illustrations |
Disciplina | 660 |
Altri autori (Persone) | CoulsonJ. M (John Metcalfe) |
Collana | Coulson & Richardson’s chemical engineering series |
Soggetto topico |
Chemical engineering
Heat - Transmission Mass transfer |
ISBN |
0-08-102551-3
0-08-102550-5 9780081025505 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1: Heat Transfer -- Chapter 1 - Heat Transfer -- Part 2: Mass Transfer -- Chapter 2 - Mass Transfer -- Part 3: Momentum, Heat and Mass Transfer -- Chapter 3 - The Boundary Layer -- Chapter 4 - Quantitative Relations Between Transfer Processes -- Chapter 5 - Applications in Humidification and Water Cooling -- Chapter 6 - Transport Processes in Microfluidic Applications -- Appendix -- Problems -- Index. |
Record Nr. | UNINA-9910583330803321 |
Oxford : , : Butterworth-Heinemann, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Coulson and Richardson's chemical engineering . Vol.1A Fluid flow : fundamentals and applications / / Raj Chhabra, V. Shankar |
Autore | Chhabra R. P. |
Edizione | [Seventh edition .] |
Pubbl/distr/stampa | Amsterdam : , : Elsevier, , 2018 |
Descrizione fisica | 1 online resource (572 pages) : illustrations |
Disciplina |
660
532.05 |
Altri autori (Persone) | CoulsonJ. M (John Metcalfe) |
Collana | Coulson & Richardson’s chemical engineering series |
Soggetto topico |
Fluid dynamics
Transport theory Chemical engineering Química industrial Ingeniería química Fluidos, Dinámica de los Transporte, Teoría del |
ISBN |
0-12-809746-9
0-08-101099-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 - Units and Dimensions -- Chapter 2 - Flow of Fluids—Energy and Momentum Relationships -- Chapter 3 - Flow of liquids in Pipes and Open Channels -- Chapter 4 - Flow of Compressible Fluids -- Chapter 5 - Flow of Multiphase Mixtures -- Chapter 6 - Flow and Pressure Measurement -- Chapter 7 - Liquid Mixing -- Chapter 8 - Pumping of Fluids -- Appendix -- Problems -- Index. |
Record Nr. | UNINA-9910583037003321 |
Chhabra R. P. | ||
Amsterdam : , : Elsevier, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Particle technology and separation processes [[electronic resource] /] / J.F. Richardson and J.H. Harker with J.R. Backhurst |
Autore | Richardson J. F (John Francis) |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Oxford, : Butterworth-Heinemann, 2002 |
Descrizione fisica | 1 online resource (1219 p.) |
Disciplina |
660
660.2 |
Altri autori (Persone) |
HarkerJ. H <1937-> (John Hadlett)
BackhurstJ. R CoulsonJ. M (John Metcalfe) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Particles |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-94356-4
9786610943562 0-08-049064-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; Acknowledgements; Introduction; Chapter 1. Particulate Solids; 1.1 Introduction; 1.2 Particle characterisation; 1.3 Particulate solids in bulk; 1.4 Blending of solid particles; 1.5 Classification of solid particles; 1.6 Separation of suspended solid particles from fluids; 1.7 Further reading; 1.8 References; 1.9 Nomenclature; Chapter 2. Particle size reduction and enlargement; 2.1 Introduction; 2.2 Size reduction of solids; 2.3 Types of crushing equipment; 2.4 Size enlargement of particles; 2.5 Further reading; 2.6 References; 2.7 Nomenclature
Chapter 3. Motion of particles in a fluid3.1 Introduction; 3.2 Flow past a cylinder and a sphere; 3.3 The drag force on a spherical particle; 3.4 Non-spherical particles; 3.5 Motion of bubbles and drops; 3.6 Drag forces and settling velocities for particles in non-Newtonian Fluids; 3.7 Accelerating motion of a particle in the gravitational Field; 3.8 Motion of particles in a centrifugal Field; 3.9 Further reading; 3.10 References; 3.11 Nomenclature; Chapter 4. Flow of fluids through granular beds and packed columns; 4.1 Introduction; 4.2 Flow of a single fluid through a granular bed 4.3 Dispersion4.4 Heat transfer in packed beds; 4.5 Packed columns; 4.6 Further reading; 4.7 References; 4.8 Nomenclature; Chapter 5. Sedimentation; 5.1 Introduction; 5.2 Sedimentation of Fine particles; 5.3 Sedimentation of coarse particles; 5.4 Further reading; 5.5 References; 5.6 Nomenclature; Chapter 6. Fluidisation; 6.1 Characteristics of fluidised systems; 6.2 Liquid-solids systems; 6.3 Gas-solids systems; 6.4 Gas-liquid-solids fluidised beds; 6.5 Heat transfer to a boundary surface; 6.6 Mass and heat transfer between fluid and particles; 6.7 Summary of the properties of fluidised beds 6.8 Applications of the fluidised solids technique6.9 Further reading; 6.10 References; 6.11 Nomenclature; Chapter 7. Liquid filtration; 7.1 Introduction; 7.2 Filtration theory; 7.3 Filtration practice; 7.4 Filtration equipment; 7.5 Further reading; 7.6 References; 7.7 Nomenclature; Chapter 8. Membrane separation processes; 8.1 Introduction; 8.2 Classification of membrane processes; 8.3 The nature of synthetic membranes; 8.4 General membrane equation; 8.5 Cross-flow microfitration; 8.6 Ultrafiltration; 8.7 Reverse osmosis; 8.8 Membrane modules and plant configuration; 8.9 Membrane fouling 8.10 Electrodialysis8.11 Reverse osmosis water treatment plant; 8.12 Pervaporation; 8.13 Liquid membranes; 8.14 Gas separations; 8.15 Further reading; 8.16 References; 8.17 Nomenclature; Chapter 9. Centrifugal separations; 9.1 Introduction; 9.2 Shape of the free surface of the liquid; 9.3 Centrifugal pressure; 9.4 Separation of immiscible liquids of different densities; 9.5 Sedimentation in a centrifugal field; 9.6 Filtration in a centrifuge; 9.7 Mechanical design; 9.8 Centrifugal equipment; 9.9 Further reading; 9.10 References; 9.11 Nomenclature; Chapter 10. Leaching; 10.1 Introduction 10.2 Mass transfer in leaching operations |
Record Nr. | UNINA-9910480369203321 |
Richardson J. F (John Francis) | ||
Oxford, : Butterworth-Heinemann, 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Particle technology and separation processes / / J.F. Richardson and J.H. Harker with J.R. Backhurst |
Autore | Richardson J. F (John Francis) |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Oxford, : Butterworth-Heinemann, 2002 |
Descrizione fisica | 1 online resource (1183 pages.) |
Disciplina |
660
660.2 |
Altri autori (Persone) |
HarkerJ. H <1937-> (John Hadlett)
BackhurstJ. R CoulsonJ. M (John Metcalfe) |
Collana | Coulson & Richardson's chemical engineering |
Soggetto topico |
Chemical engineering
Particles |
ISBN |
1-280-94356-4
9786610943562 0-08-049064-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Preface; Acknowledgements; Introduction; Chapter 1. Particulate Solids; 1.1 Introduction; 1.2 Particle characterisation; 1.3 Particulate solids in bulk; 1.4 Blending of solid particles; 1.5 Classification of solid particles; 1.6 Separation of suspended solid particles from fluids; 1.7 Further reading; 1.8 References; 1.9 Nomenclature; Chapter 2. Particle size reduction and enlargement; 2.1 Introduction; 2.2 Size reduction of solids; 2.3 Types of crushing equipment; 2.4 Size enlargement of particles; 2.5 Further reading; 2.6 References; 2.7 Nomenclature
Chapter 3. Motion of particles in a fluid3.1 Introduction; 3.2 Flow past a cylinder and a sphere; 3.3 The drag force on a spherical particle; 3.4 Non-spherical particles; 3.5 Motion of bubbles and drops; 3.6 Drag forces and settling velocities for particles in non-Newtonian Fluids; 3.7 Accelerating motion of a particle in the gravitational Field; 3.8 Motion of particles in a centrifugal Field; 3.9 Further reading; 3.10 References; 3.11 Nomenclature; Chapter 4. Flow of fluids through granular beds and packed columns; 4.1 Introduction; 4.2 Flow of a single fluid through a granular bed 4.3 Dispersion4.4 Heat transfer in packed beds; 4.5 Packed columns; 4.6 Further reading; 4.7 References; 4.8 Nomenclature; Chapter 5. Sedimentation; 5.1 Introduction; 5.2 Sedimentation of Fine particles; 5.3 Sedimentation of coarse particles; 5.4 Further reading; 5.5 References; 5.6 Nomenclature; Chapter 6. Fluidisation; 6.1 Characteristics of fluidised systems; 6.2 Liquid-solids systems; 6.3 Gas-solids systems; 6.4 Gas-liquid-solids fluidised beds; 6.5 Heat transfer to a boundary surface; 6.6 Mass and heat transfer between fluid and particles; 6.7 Summary of the properties of fluidised beds 6.8 Applications of the fluidised solids technique6.9 Further reading; 6.10 References; 6.11 Nomenclature; Chapter 7. Liquid filtration; 7.1 Introduction; 7.2 Filtration theory; 7.3 Filtration practice; 7.4 Filtration equipment; 7.5 Further reading; 7.6 References; 7.7 Nomenclature; Chapter 8. Membrane separation processes; 8.1 Introduction; 8.2 Classification of membrane processes; 8.3 The nature of synthetic membranes; 8.4 General membrane equation; 8.5 Cross-flow microfitration; 8.6 Ultrafiltration; 8.7 Reverse osmosis; 8.8 Membrane modules and plant configuration; 8.9 Membrane fouling 8.10 Electrodialysis8.11 Reverse osmosis water treatment plant; 8.12 Pervaporation; 8.13 Liquid membranes; 8.14 Gas separations; 8.15 Further reading; 8.16 References; 8.17 Nomenclature; Chapter 9. Centrifugal separations; 9.1 Introduction; 9.2 Shape of the free surface of the liquid; 9.3 Centrifugal pressure; 9.4 Separation of immiscible liquids of different densities; 9.5 Sedimentation in a centrifugal field; 9.6 Filtration in a centrifuge; 9.7 Mechanical design; 9.8 Centrifugal equipment; 9.9 Further reading; 9.10 References; 9.11 Nomenclature; Chapter 10. Leaching; 10.1 Introduction 10.2 Mass transfer in leaching operations |
Record Nr. | UNINA-9910820617403321 |
Richardson J. F (John Francis) | ||
Oxford, : Butterworth-Heinemann, 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|