Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XVII, 387 p. 159 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Health informatics Education—Data processing Application software Computer security Artificial Intelligence Health Informatics Computers and Education Computer Appl. in Social and Behavioral Sciences Systems and Data Security |
ISBN | 3-030-00889-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation. |
Record Nr. | UNISA-996466201603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XVII, 387 p. 159 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Health informatics Education—Data processing Application software Computer security Artificial Intelligence Health Informatics Computers and Education Computer Appl. in Social and Behavioral Sciences Systems and Data Security |
ISBN | 3-030-00889-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation. |
Record Nr. | UNINA-9910349404403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|