top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian models for categorical data [[electronic resource] /] / Peter Congdon
Bayesian models for categorical data [[electronic resource] /] / Peter Congdon
Autore Congdon P
Pubbl/distr/stampa Chichester ; ; New York, : Wiley, c2005
Descrizione fisica 1 online resource (448 p.)
Disciplina 519.542
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Monte Carlo method
Markov processes
Multivariate analysis
Soggetto genere / forma Electronic books.
ISBN 1-280-28770-5
9786610287703
0-470-09239-4
0-470-09238-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Models for Categorical Data; Contents; Preface; Chapter 1 Principles of Bayesian Inference; 1.1 Bayesian updating; 1.2 MCMC techniques; 1.3 The basis for MCMC; 1.4 MCMC sampling algorithms; 1.5 MCMC convergence; 1.6 Competing models; 1.7 Setting priors; 1.8 The normal linear model and generalized linear models; 1.9 Data augmentation; 1.10 Identifiability; 1.11 Robustness and sensitivity; 1.12 Chapter themes; References; Chapter 2 Model Comparison and Choice; 2.1 Introduction: formal methods, predictive methods and penalized deviance criteria; 2.2 Formal Bayes model choice
2.3 Marginal likelihood and Bayes factor approximations2.4 Predictive model choice and checking; 2.5 Posterior predictive checks; 2.6 Out-of-sample cross-validation; 2.7 Penalized deviances from a Bayes perspective; 2.8 Multimodel perspectives via parallel sampling; 2.9 Model probability estimates from parallel sampling; 2.10 Worked example; References; Chapter 3 Regression for Metric Outcomes; 3.1 Introduction: priors for the linear regression model; 3.2 Regression model choice and averaging based on predictor selection; 3.3 Robust regression methods: models for outliers
3.4 Robust regression methods: models for skewness and heteroscedasticity3.5 Robustness via discrete mixture models; 3.5.1 Complete data representation; 3.5.2 Identification issues; 3.5.3 Dirichlet process mixture models; 3.6 Non-linear regression effects via splines and other basis functions; 3.6.1 Penalized random effects for spline coefficients; 3.6.2 Basis function regression; 3.6.3 Special spline functions; 3.7 Dynamic linear models and their application in non-parametric regression; 3.7.1 Some common forms of DLM; 3.7.2 Robust errors; 3.7.3 General additive models
3.7.4 Alternative smoothness priorsExercises; References; Chapter 4 Models for Binary and Count Outcomes; 4.1 Introduction: discrete model likelihoods vs. data augmentation; 4.1.1 Count data; 4.1.2 Binomial and binary data; 4.2 Estimation by data augmentation: the Albert-Chib method; 4.2.1 Other augmented data methods; 4.3 Model assessment: outlier detection and model checks; 4.3.1 Model assessment: predictive model selection and checks; 4.4 Predictor selection in binary and count regression; 4.5 Contingency tables
4.6 Semi-parametric and general additive models for binomial and count responses4.6.1 Robust and adaptive non-parametric regression; 4.6.2 Other approaches to non-linearity; Exercises; References; Chapter 5 Further Questions in Binomial and Count Regression; 5.1 Generalizing the Poisson and binomial: overdispersion and robustness; 5.2 Continuous mixture models; 5.2.1 Modified exponential families; 5.3 Discrete mixtures; 5.4 Hurdle and zero-inflated models; 5.5 Modelling the link function; 5.5.1 Discrete (DPP mixture); 5.5.2 Parametric link transformations
5.5.3 Beta mixture on cumulative densities
Record Nr. UNINA-9910145045003321
Congdon P  
Chichester ; ; New York, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian models for categorical data [[electronic resource] /] / Peter Congdon
Bayesian models for categorical data [[electronic resource] /] / Peter Congdon
Autore Congdon P
Pubbl/distr/stampa Chichester ; ; New York, : Wiley, c2005
Descrizione fisica 1 online resource (448 p.)
Disciplina 519.542
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Monte Carlo method
Markov processes
Multivariate analysis
ISBN 1-280-28770-5
9786610287703
0-470-09239-4
0-470-09238-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Models for Categorical Data; Contents; Preface; Chapter 1 Principles of Bayesian Inference; 1.1 Bayesian updating; 1.2 MCMC techniques; 1.3 The basis for MCMC; 1.4 MCMC sampling algorithms; 1.5 MCMC convergence; 1.6 Competing models; 1.7 Setting priors; 1.8 The normal linear model and generalized linear models; 1.9 Data augmentation; 1.10 Identifiability; 1.11 Robustness and sensitivity; 1.12 Chapter themes; References; Chapter 2 Model Comparison and Choice; 2.1 Introduction: formal methods, predictive methods and penalized deviance criteria; 2.2 Formal Bayes model choice
2.3 Marginal likelihood and Bayes factor approximations2.4 Predictive model choice and checking; 2.5 Posterior predictive checks; 2.6 Out-of-sample cross-validation; 2.7 Penalized deviances from a Bayes perspective; 2.8 Multimodel perspectives via parallel sampling; 2.9 Model probability estimates from parallel sampling; 2.10 Worked example; References; Chapter 3 Regression for Metric Outcomes; 3.1 Introduction: priors for the linear regression model; 3.2 Regression model choice and averaging based on predictor selection; 3.3 Robust regression methods: models for outliers
3.4 Robust regression methods: models for skewness and heteroscedasticity3.5 Robustness via discrete mixture models; 3.5.1 Complete data representation; 3.5.2 Identification issues; 3.5.3 Dirichlet process mixture models; 3.6 Non-linear regression effects via splines and other basis functions; 3.6.1 Penalized random effects for spline coefficients; 3.6.2 Basis function regression; 3.6.3 Special spline functions; 3.7 Dynamic linear models and their application in non-parametric regression; 3.7.1 Some common forms of DLM; 3.7.2 Robust errors; 3.7.3 General additive models
3.7.4 Alternative smoothness priorsExercises; References; Chapter 4 Models for Binary and Count Outcomes; 4.1 Introduction: discrete model likelihoods vs. data augmentation; 4.1.1 Count data; 4.1.2 Binomial and binary data; 4.2 Estimation by data augmentation: the Albert-Chib method; 4.2.1 Other augmented data methods; 4.3 Model assessment: outlier detection and model checks; 4.3.1 Model assessment: predictive model selection and checks; 4.4 Predictor selection in binary and count regression; 4.5 Contingency tables
4.6 Semi-parametric and general additive models for binomial and count responses4.6.1 Robust and adaptive non-parametric regression; 4.6.2 Other approaches to non-linearity; Exercises; References; Chapter 5 Further Questions in Binomial and Count Regression; 5.1 Generalizing the Poisson and binomial: overdispersion and robustness; 5.2 Continuous mixture models; 5.2.1 Modified exponential families; 5.3 Discrete mixtures; 5.4 Hurdle and zero-inflated models; 5.5 Modelling the link function; 5.5.1 Discrete (DPP mixture); 5.5.2 Parametric link transformations
5.5.3 Beta mixture on cumulative densities
Record Nr. UNINA-9910830214403321
Congdon P  
Chichester ; ; New York, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian models for categorical data / / Peter Congdon
Bayesian models for categorical data / / Peter Congdon
Autore Congdon P
Pubbl/distr/stampa Chichester ; ; New York, : Wiley, c2005
Descrizione fisica 1 online resource (448 p.)
Disciplina 519.5/42
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Monte Carlo method
Markov processes
Multivariate analysis
ISBN 9786610287703
9781280287701
1280287705
9780470092392
0470092394
9780470092385
0470092386
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Models for Categorical Data; Contents; Preface; Chapter 1 Principles of Bayesian Inference; 1.1 Bayesian updating; 1.2 MCMC techniques; 1.3 The basis for MCMC; 1.4 MCMC sampling algorithms; 1.5 MCMC convergence; 1.6 Competing models; 1.7 Setting priors; 1.8 The normal linear model and generalized linear models; 1.9 Data augmentation; 1.10 Identifiability; 1.11 Robustness and sensitivity; 1.12 Chapter themes; References; Chapter 2 Model Comparison and Choice; 2.1 Introduction: formal methods, predictive methods and penalized deviance criteria; 2.2 Formal Bayes model choice
2.3 Marginal likelihood and Bayes factor approximations2.4 Predictive model choice and checking; 2.5 Posterior predictive checks; 2.6 Out-of-sample cross-validation; 2.7 Penalized deviances from a Bayes perspective; 2.8 Multimodel perspectives via parallel sampling; 2.9 Model probability estimates from parallel sampling; 2.10 Worked example; References; Chapter 3 Regression for Metric Outcomes; 3.1 Introduction: priors for the linear regression model; 3.2 Regression model choice and averaging based on predictor selection; 3.3 Robust regression methods: models for outliers
3.4 Robust regression methods: models for skewness and heteroscedasticity3.5 Robustness via discrete mixture models; 3.5.1 Complete data representation; 3.5.2 Identification issues; 3.5.3 Dirichlet process mixture models; 3.6 Non-linear regression effects via splines and other basis functions; 3.6.1 Penalized random effects for spline coefficients; 3.6.2 Basis function regression; 3.6.3 Special spline functions; 3.7 Dynamic linear models and their application in non-parametric regression; 3.7.1 Some common forms of DLM; 3.7.2 Robust errors; 3.7.3 General additive models
3.7.4 Alternative smoothness priorsExercises; References; Chapter 4 Models for Binary and Count Outcomes; 4.1 Introduction: discrete model likelihoods vs. data augmentation; 4.1.1 Count data; 4.1.2 Binomial and binary data; 4.2 Estimation by data augmentation: the Albert-Chib method; 4.2.1 Other augmented data methods; 4.3 Model assessment: outlier detection and model checks; 4.3.1 Model assessment: predictive model selection and checks; 4.4 Predictor selection in binary and count regression; 4.5 Contingency tables
4.6 Semi-parametric and general additive models for binomial and count responses4.6.1 Robust and adaptive non-parametric regression; 4.6.2 Other approaches to non-linearity; Exercises; References; Chapter 5 Further Questions in Binomial and Count Regression; 5.1 Generalizing the Poisson and binomial: overdispersion and robustness; 5.2 Continuous mixture models; 5.2.1 Modified exponential families; 5.3 Discrete mixtures; 5.4 Hurdle and zero-inflated models; 5.5 Modelling the link function; 5.5.1 Discrete (DPP mixture); 5.5.2 Parametric link transformations
5.5.3 Beta mixture on cumulative densities
Record Nr. UNINA-9911019459403321
Congdon P  
Chichester ; ; New York, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian statistical modelling [[electronic resource] /] / Peter Congdon
Bayesian statistical modelling [[electronic resource] /] / Peter Congdon
Autore Congdon P
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Descrizione fisica 1 online resource (597 p.)
Disciplina 519.542
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Soggetto genere / forma Electronic books.
ISBN 1-280-83897-3
9786610838974
0-470-03594-3
0-470-03593-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction : the Bayesian method, its benefits and implementation -- Bayesian model choice, comparison and checking -- The major densities and their application -- Normal linear regression, general linear models and log-linear models -- Hierarchical priors for pooling strength and overdispersed regression modelling -- Discrete mixture priors -- Multinomial and ordinal regression models -- Time series models -- Modelling spatial dependencies -- Nonlinear and nonparametric regression -- Multilevel and panel data models -- Latent variable and structural equation models for multivariate data -- Survival and event history analysis -- Missing data models -- Measurement error, seemingly unrelated regressions, and simultaneous eqations.
Record Nr. UNINA-9910143735103321
Congdon P  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian statistical modelling / / Peter Congdon
Bayesian statistical modelling / / Peter Congdon
Autore Congdon P
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Descrizione fisica 1 online resource (597 p.)
Disciplina 519.5/42
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
ISBN 9786610838974
9781280838972
1280838973
9780470035948
0470035943
9780470035931
0470035935
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction : the Bayesian method, its benefits and implementation -- Bayesian model choice, comparison and checking -- The major densities and their application -- Normal linear regression, general linear models and log-linear models -- Hierarchical priors for pooling strength and overdispersed regression modelling -- Discrete mixture priors -- Multinomial and ordinal regression models -- Time series models -- Modelling spatial dependencies -- Nonlinear and nonparametric regression -- Multilevel and panel data models -- Latent variable and structural equation models for multivariate data -- Survival and event history analysis -- Missing data models -- Measurement error, seemingly unrelated regressions, and simultaneous eqations.
Record Nr. UNINA-9911019564103321
Congdon P  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui