Virtual Reality Technology
| Virtual Reality Technology |
| Autore | Burdea Grigore C |
| Edizione | [3rd ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (739 pages) |
| Disciplina | 006 |
| Altri autori (Persone) | CoiffetPhilippe |
| Soggetto topico |
Virtual reality
Human-computer interaction |
| ISBN |
9781119512608
1119512603 9781394306947 1394306946 9781119484653 1119484650 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Pager -- Copyright Page -- Dedication Page -- Contents -- About the Authors -- Foreword by Distinguished Professor Henry Fuchs -- Preface to the 3rd Edition -- About the Companion Instructor Website -- Chapter 1 Introduction -- 1.1 The Three Is of Virtual Reality -- 1.2 Early VR -- 1.3 First Commercial VR -- 1.4 VR at the Turn of the Millennium -- 1.5 VR in the 21st Century -- 1.6 Components of Classical and Modern VR Systems -- 1.7 Review Questions -- References -- Chapter 2 Input Devices: Trackers, Navigation, Gesture, and Neural Interfaces -- 2.1 Three- Dimensional Position Trackers -- 2.1.1 Tracker Performance Parameters -- 2.1.2 Electromagnetic Trackers -- 2.1.2.1 Trackers Using Alternating Current (AC) Magnetic Fields -- 2.1.2.2 Trackers Using Direct Current (DC) Magnetic Fields -- 2.1.2.3 Comparison of AC and DC Magnetic Trackers Accuracy Degradation -- 2.1.3 Optical Trackers -- 2.1.3.1 Passive Camera- Based Optical Trackers -- 2.1.3.2 Active Camera- Based Optical Trackers -- 2.1.3.3 Time- of- Flight Optical Trackers -- 2.1.3.4 Consumer- Grade Optical Trackers -- 2.1.3.5 Inside- Looking- Out Optical Trackers -- 2.1.3.6 The Quest 2 HMD Optical Tracker -- 2.1.3.7 Eye Trackers for Head- Mounted Displays -- 2.1.4 Optical Tracker Accuracy Degradation -- 2.1.5 Hybrid Inertial Trackers -- 2.1.5.1 Hybrid Inertial- Optical Trackers -- 2.1.6 Global Positioning System Trackers -- 2.2 Navigation and Manipulation Interfaces -- 2.2.1 Desktop Navigation Interfaces -- 2.2.2 Hand- held Navigation and Manipulation Interfaces -- 2.2.2.1 The FlightStick3 -- 2.2.2.2 Game Controllers as Navigation and Manipulation Interfaces -- 2.2.2.3 The VIVE Game Controller -- 2.2.2.4 The Quest Touch Controller -- 2.2.3 Locomotion Interfaces -- 2.2.3.1 The Cybershoes Arcade -- 2.2.3.2 The Omni Treadmill -- 2.3 Gesture Interfaces.
2.3.1 Sensing Gloves -- 2.3.1.1 The 5DT Data Glove Ultra 14 -- 2.3.1.2 The CyberGlove II -- 2.3.1.3 The Cyberglove- HT -- 2.3.2 Natural Hand Tracking -- 2.3.2.1 Natural vs. Sensing Glove- based Hand Tracking -- 2.4 Neural Interfaces -- 2.4.1 External Neural Interfaces -- 2.4.1.1 Research- Grade External Brain-Computer Interface -- 2.4.1.2 Consumer- Grade External Brain-Computer Interface -- 2.4.2 Implanted Neural Interfaces -- 2.5 Conclusions -- 2.6 Review Questions -- References -- Chapter 3 Output Devices: Graphics Displays -- 3.1 The Human Vision System -- 3.2 Graphics Display Characteristics -- 3.3 Display Technologies -- 3.3.1 Displays Using LCD Technology -- 3.3.2 Displays Using OLED Technology -- 3.4 Personal Graphics Displays -- 3.4.1 Smartphones as VR Displays -- 3.4.1.1 Casting -- 3.4.1.2 Smartphones as Input Interfaces -- 3.4.1.3 Smartphone Use in HMDs -- 3.4.2 Head- Mounted Displays -- 3.4.2.1 Fixed- Resolution HMD Optics -- 3.4.2.2 Foveated HMD Optics -- 3.4.2.3 HMDs Weight and Weight Distribution -- 3.4.2.4 The FOVE 0 HMD -- 3.4.2.5 The Meta Quest 2 HMD -- 3.4.2.6 The HTC VIVE Focus 3 HMD -- 3.4.2.7 The Pimax Vision 8K X HMD -- 3.4.3 Desk- Supported Personal Displays -- 3.4.3.1 Autostereoscopic Monitors -- 3.4.3.2 3D Monitors -- 3.5 Large- Volume Displays -- 3.5.1 Liquid Crystal Tiled Large- Volume Displays -- 3.5.1.1 Tiled Wall Displays -- 3.5.1.2 Tiled CAVE Displays -- 3.5.2 Projector- Based Large- Volume Displays -- 3.5.2.1 Dome- Type Large- Volume Displays -- 3.5.2.2 Tiled Display Scene Continuity -- 3.6 Micro- LED Walls and Holographic Displays -- 3.6.1 Micro- LED Walls -- 3.6.2 Holographic Displays -- 3.7 Conclusions -- 3.8 Review Questions -- References -- Chapter 4 Output Devices: Three- Dimensional Sound, Haptic, and Olfactory Displays -- 4.1 Three- Dimensional Sound Displays -- 4.1.1 Localized vs. Nonlocalized Sound. 4.1.2 The Human Auditory System -- 4.1.2.1 The Vertical- Polar System of Coordinates -- 4.1.3 Head- Related Transfer Function -- 4.1.4 Generic Convolvotron Architecture -- 4.1.5 Spatialized Sound for All- in- One HMDs -- 4.1.6 Speaker- Based 3D Sound -- 4.1.7 Wearable Sound Interfaces -- 4.2 Haptic Displays -- 4.2.1 The Human Haptic System -- 4.2.1.1 Human Haptic Sensing System -- 4.2.1.2 Human Sensory- Motor Control -- 4.2.2 Tactile Feedback Interfaces -- 4.2.2.1 The CyberTouch II Glove -- 4.2.2.2 The HaptX Gloves G1 Touch Feedback Wearable System -- 4.2.2.3 The TactSuit X Whole Body Tactile Feedback -- 4.2.2.4 Temperature Feedback Interfaces -- 4.2.3 Force Feedback Interfaces -- 4.2.3.1 The Touch X Arm -- 4.2.3.2 The Delta.3 Force Feedback Arm -- 4.2.3.3 The ArmeoPower -- 4.2.3.4 SenseGlove Nova Force Feedback Glove -- 4.3 Olfactory Displays -- 4.3.1 The Human Olfactory System -- 4.3.2 Olfactory Systems for Virtual Reality -- 4.3.2.1 Ambient Olfactory Displays -- 4.3.2.2 Air Cannon- Based Olfactory Display -- 4.3.2.3 Wearable Olfactory Displays -- 4.4 Conclusions -- 4.5 Review Questions -- References -- Chapter 5 Computing Architectures for Virtual Reality -- 5.1 The Rendering Pipeline -- 5.1.1 The Graphics Rendering Pipeline -- 5.1.1.1 Traditional Graphics Rendering Pipeline -- 5.1.1.2 Modern Graphics Rendering Pipeline -- 5.1.2 The Haptic Rendering Pipeline -- 5.2 Gaming Desktop Architectures -- 5.2.1 The 12th Generation Core CPU and Chip Set -- 5.2.2 Cooling of Gaming PCs -- 5.2.3 Graphics Accelerator Cards for PCs -- 5.2.3.1 The NVIDIA GTX 1080 Founder's Edition Graphics Card -- 5.2.3.2 The NVIDIA GeForce RTX 4090 Graphics Card -- 5.3 Graphics Benchmarks -- 5.3.1 Games as Benchmarks -- 5.3.2 The SPECviewperf 2020 Benchmarks -- 5.3.3 A Frame Capture Analysis Tool for Virtual Reality -- 5.4 Distributed VR Architectures -- 5.4.1 Split Rendering. 5.4.2 Colocated Rendering Pipelines -- 5.4.3 Multi- pipeline Synchronization -- 5.4.3.1 Synchronization of Haptic and Graphics Pipelines -- 5.4.3.2 Synchronization of Colocated Graphics Pipelines -- 5.4.3.3 Pipeline Synchronization Using the NVIDIA Quadro Sync II Card -- 5.4.4 Cloud Rendering -- 5.4.4.1 A Cloud Rendering Architecture Example -- 5.4.4.2 Cloud Rendering Latency -- 5.5 Conclusions -- 5.6 Review Questions -- References -- Chapter 6 Modeling Virtual Environments -- 6.1 Geometric Modeling -- 6.1.1 Virtual Object Shape -- 6.1.1.1 Using a 3D Authoring Software -- 6.1.1.2 Importing CAD Files -- 6.1.1.3 Creating Surfaces with 3D Scanners -- 6.1.1.4 Using Online 3D Object Databases -- 6.1.2 Object Visual Appearance -- 6.1.2.1 Scene Illumination -- 6.1.2.2 Texture Mapping -- 6.2 Kinematics Modeling -- 6.2.1 Homogeneous Transformation Matrices -- 6.2.2 Object Position -- 6.2.3 Transformation Invariants -- 6.2.4 Object Hierarchies -- 6.2.5 Viewing the 3D World -- 6.3 Physical Modeling -- 6.3.1 Collision Detection -- 6.3.1.1 Collision Detection for Large Virtual Environments -- 6.3.2 Collision Response Involving Object Surfaces -- 6.3.2.1 Topology- Preserving Collision Response -- 6.3.2.2 Topology- Altering Collision Response -- 6.3.3 Contact Force Modeling -- 6.3.3.1 Contact Forces When Deforming Elastic Objects -- 6.3.3.2 Contact Forces When Deforming Plastic Objects -- 6.3.3.3 Contact Forces When Interacting with Virtual Walls -- 6.3.4 Force Smoothing and Mapping -- 6.3.5 Haptic Texturing -- 6.3.5.1 Haptic Textures Produced by Nonwearable Interfaces -- 6.3.5.2 Haptic Textures Produced by Wearable Interfaces -- 6.4 Behavior Modeling -- 6.4.1 Simple Behavior Models -- 6.4.2 Enhanced Behavior Models -- 6.4.3 Crowd Behavior Models -- 6.5 Model Management -- 6.5.1 Level- of- Detail Management -- 6.5.1.1 Discrete Level- of- Detail Management. 6.5.1.2 Continuous Level- of- Detail Management -- 6.5.1.3 Adaptive Level- of- Detail Management Using Foveated Rendering -- 6.5.1.4 Adaptive Level- of- Detail Management Guaranteeing Frame Time -- 6.5.2 Cell Segmentation -- 6.5.2.1 Automatic Cell Segmentation -- 6.5.2.2 3D Cell Segmentation -- 6.6 Conclusions -- 6.7 Review Questions -- References -- Chapter 7 Virtual Reality Programming -- 7.1 Scene Graphs and Toolkits -- 7.1.1 Scene Graphs -- 7.1.1.1 Internal Scene Graphs -- 7.1.1.2 Distributed Scene Graphs -- 7.2 Toolkits -- 7.2.1 Java3D -- 7.2.1.1 Java 3D Model Geometry and Appearance -- 7.2.1.2 Java3D Scene Graph -- 7.2.1.3 Java3D Sensors and Behaviors -- 7.2.1.4 Java3D Networking -- 7.2.2 The Vizard Toolkit -- 7.2.2.1 Vizard Model Geometry and Appearance -- 7.2.2.2 Vizard Scene Graph -- 7.2.2.3 Vizard Sensors and Behaviors -- 7.2.2.4 Vizard Physics Engine -- 7.2.2.5 Vizard OpenHaptics Plug- in -- 7.2.2.6 Vizard Networking -- 7.2.3 The OpenHaptics Toolkit -- 7.2.3.1 OpenHaptics Integration with the Graphics Pipeline -- 7.2.3.2 OpenHaptics QuickHaptics Micro API -- 7.2.3.3 OpenHaptics Haptic Device to Screen Mapping -- 7.2.3.4 OpenHaptics Unity Plugin -- 7.3 Unity 3D Game Engine -- 7.3.1 The Game Engine -- 7.3.2 Game Production Pipeline -- 7.3.2.1 The Pre- production Pipeline Stage -- 7.3.2.2 The Production Pipeline Stage -- 7.3.2.3 The Post- production Pipeline Stage -- 7.3.3 Unity 3D Game Programming -- 7.3.3.1 Creating a New Project in Unity -- 7.3.3.2 The Unity Editor -- 7.3.3.3 Unity Game Objects -- 7.3.3.4 Physics Programming in Unity -- 7.3.3.5 Scripting in Unity -- 7.3.3.6 Artificial Intelligence in Unity Gaming -- 7.4 Conclusions -- 7.5 Review Questions -- References -- Chapter 8 Human Factors in Virtual Reality -- 8.1 Methodology and Technology -- 8.1.1 The Experimental Protocol -- 8.1.2 Institutional Review and Participant Consent. 8.1.3 Data Collection and Analysis. |
| Record Nr. | UNINA-9911019907203321 |
Burdea Grigore C
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Virtual reality technology / / Grigore Burdea, Philippe Coiffet
| Virtual reality technology / / Grigore Burdea, Philippe Coiffet |
| Autore | Burdea Grigore |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-Interscience, , 2003 |
| Descrizione fisica | 1 online resource (646 pages) : illustrations |
| Disciplina | 006 |
| Soggetto topico |
Human-computer interaction
Virtual reality |
| ISBN |
1-119-48572-X
0-471-72375-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910146917603321 |
Burdea Grigore
|
||
| Hoboken, New Jersey : , : Wiley-Interscience, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||