top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Human-Robot Interaction Strategies for Walker-Assisted Locomotion / / by Carlos A. Cifuentes, Anselmo Frizera
Human-Robot Interaction Strategies for Walker-Assisted Locomotion / / by Carlos A. Cifuentes, Anselmo Frizera
Autore Cifuentes Carlos A
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXV, 105 p. 67 illus., 47 illus. in color.)
Disciplina 629.8924019
Collana Springer Tracts in Advanced Robotics
Soggetto topico Robotics
Automation
Artificial intelligence
User interfaces (Computer systems)
Rehabilitation
Robotics and Automation
Artificial Intelligence
User Interfaces and Human Computer Interaction
ISBN 3-319-34063-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Assistive Devices for Human Mobility and Gait Rehabilitation -- Human-Robot Interaction for Assisting Human Locomotion -- Development of a Cognitive HRI Strategy for Mobile Robot Control -- Cognitive HRI for Human Mobility Assistance.-Multimodal Interface for Human Mobility Assistance -- Conclusions and Future Works.
Record Nr. UNINA-9910254239003321
Cifuentes Carlos A  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interfacing Humans and Robots for Gait Assistance and Rehabilitation
Interfacing Humans and Robots for Gait Assistance and Rehabilitation
Autore Cifuentes Carlos A
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (404 pages)
Altri autori (Persone) MúneraMarcela
Soggetto genere / forma Electronic books.
ISBN 3-030-79630-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgment -- Contents -- List of Figures -- List of Tables -- 1 Introduction to Robotics for Gait Assistance and Rehabilitation -- 1.1 Human Gait -- 1.1.1 The Gait Cycle -- 1.1.2 Gait Assistance and Rehabilitation -- 1.2 Wearable Robotics -- 1.2.1 Defining Wearable Robotics -- 1.2.2 Lower-Limb Exoskeletons -- 1.2.2.1 Lower-Limb Exoskeletons in Gait Rehabilitation -- 1.2.2.2 Lower-Limb Exoskeletons in Gait Assistance -- 1.3 Mobile Robotics -- 1.3.1 Defining Mobile Assistive Devices -- 1.3.2 Smart Walkers -- 1.3.3 Smart Walkers in Gait Assistance and Rehabilitation -- 1.3.4 Alternative Mobile Robots for Gait Rehabilitation -- 1.4 Social Robotics -- 1.4.1 Defining Social Robotics -- 1.4.2 Social Robots in Healthcare -- 1.4.3 Social Robots in Gait Assistance and Rehabilitation -- 1.5 Combined Platforms -- 1.5.1 Defining Combined Robotic Platforms -- 1.5.2 Combined Robotic Platforms in Healthcare -- 1.5.3 Combined Robotic Platforms in Gait Assistance and Rehabilitation -- 1.5.4 General Features of Existing Combined Platforms -- 1.6 Scope of the Book -- References -- 2 Kinematics, Actuation, and Sensing Architectures for Rehabilitation and Assistive Robotics -- 2.1 Introduction -- 2.2 Robotic Geometric and Kinematic Modeling -- 2.2.1 Forward vs. Inverse Kinematics -- 2.2.2 Denavit-Hartenberg Convention -- 2.2.3 Modeling Lower-Limb Exoskeletons -- 2.2.4 Modeling Social Robots -- 2.2.4.1 Modeling the Head and Upper Limb of the CASTOR Robot -- 2.2.4.2 The Head Kinematic Chain -- 2.2.4.3 The Upper-Limb Kinematic Chain -- 2.2.4.4 Modeling the Lower Limb of the NAO Robot -- 2.2.5 Modeling Mobile Robots -- 2.2.5.1 Wheeled Locomotion -- 2.2.5.2 Wheel Configurations in Smart Walkers -- 2.2.5.3 Wheel Drive Types -- 2.2.5.4 Mobile Robot Kinematics -- 2.3 Robotic Actuation Systems -- 2.3.1 Actuation Systems in Lower-Limb Exoskeletons.
2.3.1.1 Electric Actuation System -- 2.3.1.2 Hydraulic Actuation System -- 2.3.1.3 Pneumatic System Actuator -- 2.3.1.4 Transmission Mechanisms -- 2.3.2 Actuation Systems in Social Robots -- 2.3.3 Actuation Systems in Smart Walkers -- 2.3.3.1 Actuation Systems for Motion -- 2.3.3.2 Actuation Systems to Interact with the User -- 2.4 Robotic Sensory Architectures -- 2.4.1 Sensory Architecture of Lower-Limb Exoskeletons -- 2.4.1.1 Kinematic Parameters -- 2.4.1.2 Kinetic Parameters -- 2.4.2 Sensory Architecture of Social Robots -- 2.4.3 Sensory Architectures of Smart Walkers -- 2.4.3.1 Sensing Loops in Smart Walkers -- 2.4.3.2 Common Sensors in Smart Walkers -- 2.5 Conclusions -- References -- 3 Fundamentals for the Design of Lower-Limb Exoskeletons -- 3.1 Introduction -- 3.2 User-Centered Features -- 3.2.1 Targeted Goal Focused on the Applications -- 3.2.1.1 Exoskeletons for Human Augmentation -- 3.2.1.2 Exoskeletons for Rehabilitation -- 3.2.1.3 Exoskeletons for Assistance -- 3.2.2 Anatomic Concepts -- 3.2.2.1 Body Planes and Human Joints -- 3.2.2.2 Human Hip Joint -- 3.2.2.3 Human Knee Joint -- 3.2.2.4 Human Ankle-Foot Complex -- 3.3 Device-Centered Features -- 3.3.1 Mechanical Design -- 3.3.1.1 Structure's Design -- 3.3.1.2 Joints' Design -- 3.3.1.3 Physical Interfaces -- 3.3.2 Actuation and Control Strategies -- 3.3.2.1 Actuator Classification -- 3.3.2.2 Control Strategies -- 3.4 Design Remarks to Bring Exoskeletons to the Market -- 3.5 Conclusions -- References -- 4 Fundamentals for the Design of Smart Walkers -- 4.1 Introduction -- 4.2 State of the Art About Smart Walkers -- 4.3 Physical Structures -- 4.3.1 Definition of Physical Structure -- 4.3.2 Examples of Physical Structures -- 4.4 Safety Provisions -- 4.4.1 Safety Physical Provisions -- 4.4.2 Sensory Provisions for Safety -- 4.4.2.1 Fall Prevention -- 4.4.2.2 Obstacle Detection and Avoidance.
4.4.2.3 Stairs and Slopes Detection -- 4.4.2.4 Speed Detection -- 4.5 Human-Robot Interaction Strategies -- 4.5.1 Estimation of Movement's Intention -- 4.5.2 Biomechanical and Health Monitoring -- 4.5.2.1 Gait Parameters Monitoring -- 4.5.2.2 Health Monitoring -- 4.5.3 Guidance and Navigation -- 4.5.3.1 Autopilot System -- 4.6 Control Strategies -- 4.6.1 Fuzzy Logic Controller -- 4.6.2 Admittance Controller -- 4.6.3 Kinematic Controller -- 4.7 Conclusions -- References -- 5 Sensing Methodologies for Gait Parameters Estimationand Control -- 5.1 Introduction -- 5.2 Spatiotemporal Gait Parameters -- 5.3 Wearable Gait Analysis Devices -- 5.3.1 Inertial Sensors -- 5.3.2 Ultrasonic Sensors -- 5.3.3 Laser Rangefinders (LRFs) -- 5.3.4 Foot Pressure Sensors -- 5.4 Classification of Gait Phases: Exoskeletons' Case Study -- 5.4.1 Threshold-Based Detection Algorithm (TB) -- 5.4.2 Classification Using a Hidden Markov Model (HMM) -- 5.5 Estimation of Gait Parameters: Smart Walkers' Case Study -- 5.5.1 Gait Data Acquisition -- 5.5.2 Clustering of Legs' Data -- 5.5.3 Legs' Distance Difference (LDD) Signal -- 5.5.4 Adaptive Filters for LDD Processing -- 5.5.4.1 Weighted Frequency Fourier Linear Combiner (WFLC) -- 5.5.4.2 Fourier Linear Combiner (FLC) -- 5.5.5 Online Estimation -- 5.6 Conclusions -- References -- 6 Experimental Characterization of Flexible and Soft Actuators for Rehabilitation and Assistive Devices -- 6.1 Introduction -- 6.2 Characterization of Actuators -- 6.2.1 Characterization of a Variable Stiffness Actuator in Gait Rehabilitation -- 6.2.1.1 Trends and Essential Variables -- 6.2.1.2 T-FLEX Design and Test Bench Structure -- 6.2.1.3 Experimental Procedure -- 6.2.1.4 Results -- 6.2.2 Characterization of a Soft Actuator Based on Pneumatic Actuation in Hand Rehabilitation -- 6.2.2.1 Trends and Essential Variables.
6.2.2.2 ExHand Design and Test Bench Structure -- 6.2.2.3 Experimental Procedure -- 6.2.2.4 Results -- 6.3 Actuators for Assistive Applications -- 6.4 Conclusions -- References -- 7 Variable Stiffness Actuators for Wearable Applications in Gait Rehabilitation -- 7.1 Introduction -- 7.2 Variable Stiffness Actuators -- 7.3 VSA in Rehabilitation Scenarios -- 7.3.1 VSA in Wearable Robotics -- 7.3.2 T-FLEX Ankle Exoskeleton -- 7.4 Experimental Validations of the T-FLEX -- 7.4.1 T-FLEX in Gait Assistance -- 7.4.2 T-FLEX in a Stationary Scenario -- 7.5 Conclusions -- References -- 8 Impedance Control Strategies for Lower-Limb Exoskeletons -- 8.1 Introduction -- 8.2 Human-Robot Interaction -- 8.3 Sensors in the HRI of the AGoRA Lower-Limb Exoskeleton -- 8.3.1 Force Sensing -- 8.3.2 Position and Motion Sensing -- 8.4 Actuation in the HRI of the AGoRA Lower-Limb Exoskeleton -- 8.5 Impedance Control of Human-Robot Interaction -- 8.5.1 Problem Statement -- 8.5.1.1 Robot's Dynamics -- 8.5.1.2 The Mass-Spring-Damper System -- 8.5.2 Impedance Controller -- 8.5.3 Admittance Controller -- 8.6 Case Study: Impedance Control in the AGoRA Lower-Limb Exoskeleton -- 8.7 Case Study: Admittance Control in the AGoRA Lower-Limb Exoskeleton -- 8.8 Chapter Conclusions -- References -- 9 Brain-Computer Interface for Controlling Lower-Limb Exoskeletons -- 9.1 Introduction -- 9.2 Brain-Computer Interface and ElectroencephalographicSignals -- 9.3 BCI Control System Design -- 9.3.1 Signal Acquisition -- 9.3.2 Pre-processing -- 9.3.3 Feature Extraction -- 9.3.4 Decoding -- 9.4 Lower-Limb Exoskeletons with BCI Systems Review -- 9.4.1 Lokomat -- 9.4.2 RoGo -- 9.4.3 H2 Exoskeleton -- 9.4.4 Rex Exoskeleton -- 9.4.5 Motorized Ankle-Foot Orthosis: MAFO -- 9.4.6 H2 Foot-Ankle Orthosis -- 9.5 BCI System Integration with T-FLEX -- 9.5.1 Signal Acquisition -- 9.5.2 Pre-processing.
9.5.3 Feature Extraction -- 9.5.4 Decoding -- 9.5.5 Communication Between Systems: BCI-T-FLEX -- 9.6 Case Study: BCI System Control Assessment with T-FLEX -- 9.6.1 Experimental Procedure -- 9.6.2 Results of the Study -- 9.7 Chapter Conclusions -- References -- 10 Control Strategies for Human-Robot-Environment Interaction in Assisted Gait with Smart Walkers -- 10.1 Introduction -- 10.2 Design Considerations for Control Strategies -- 10.3 Robotic Platforms -- 10.3.1 AGoRA Smart Walker -- 10.3.2 UFES Smart Walker -- 10.4 Control Strategies for HRI -- 10.4.1 Estimation of Physical Interaction -- 10.4.2 Signals Processing -- 10.4.3 Motion Intention Detector -- 10.4.4 HRI Strategy: Case of Study -- 10.5 Control Strategies for REI -- 10.5.1 Positioning Control -- 10.5.1.1 Non-linear Position Controller -- 10.5.1.2 Proportional Position Controller -- 10.5.2 Path Following Control -- 10.5.2.1 Non-linear Path Following Controller -- 10.5.2.2 Proportional Path Following Controller -- 10.5.3 Autonomous Navigation -- 10.5.3.1 Requirements for Navigation -- 10.5.3.2 Localization and Map Building -- 10.5.3.3 Path Planners and Cost Maps -- 10.5.3.4 Considerations for Smart Walkers -- 10.5.4 Low-Level Safety Supervisor -- 10.6 Conclusions -- References -- 11 Socially Assistive Robotics for Gait Rehabilitation -- 11.1 Introduction -- 11.2 Social Interaction -- 11.2.1 Relevant SAR Characteristics During SocialInteraction -- 11.2.1.1 Social Robots' Embodiment -- 11.2.1.2 Socio-emotional Intelligence -- 11.2.1.3 Socio-cognitive Skills -- 11.2.2 Importance of the Cognitive Approachin Rehabilitation -- 11.2.2.1 Intrinsic Motivation -- 11.2.2.2 Adherence -- 11.3 Patient-Robot Interfaces Based on SAR -- 11.3.1 Participatory Design -- 11.3.2 Design Criteria -- 11.3.3 Patient-Robot Interface Structure -- 11.3.3.1 Sensor Interface -- 11.3.3.2 Graphical User Interface.
11.3.3.3 Social Robotic Agent.
Record Nr. UNINA-9910502625003321
Cifuentes Carlos A  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui