Artificial Life and Evolutionary Computation [[electronic resource] ] : 14th Italian Workshop, WIVACE 2019, Rende, Italy, September 18–20, 2019, Revised Selected Papers / / edited by Franco Cicirelli, Antonio Guerrieri, Clara Pizzuti, Annalisa Socievole, Giandomenico Spezzano, Andrea Vinci |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 185 p. 61 illus., 45 illus. in color.) |
Disciplina | 003.7 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Artificial intelligence
Computer communication systems Application software Computer science—Mathematics Computers Artificial Intelligence Computer Communication Networks Information Systems Applications (incl. Internet) Mathematics of Computing Theory of Computation |
ISBN | 3-030-45016-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Towards an Assistive Social Robot Interacting with Human Patient to Establish a Mutual and Effective Support -- Selecting for Positive Responses to Knock outs in Boolean Networks -- Avalanches of Perturbations in Modular Gene Regulatory Networks -- The Effects of a Simplified Model of Chromatin Dynamics on Attractors Robustness in Random Boolean Networks with Self-loops: an Experimental Study -- A Memetic Approach for the Orienteering Problem -- The Detection of Dynamical Organization in Cancer Evolution Models -- The Simulation of Noise Impact on the Dynamics of a Discrete Chaotic Map -- Exploiting Distributed Discrete-Event Simulation Techniques for Parallel Execution of Cellular Automata -- A Relevance Index-based Method for Improved Detection of Malicious Users in Social Networks -- An Analysis of Cooperative Coevolutionary Differential Evolution as Neural Networks Optimizer -- Design and Evaluation of a Heuristic Optimization Tool Based on Evolutionary Grammars Using PSoCs -- How Word Choice Affects Cognitive Impairment Detection by Handwriting Analysis: a Preliminary Study -- Modeling the Coordination of a Multiple Robots Using Nature Inspired Approaches -- Nestedness Temperature in the Agent-Artifact Space: Emergence of Hierarchical Order in the 2000-2014 Photonics Techno-Economic Complex System -- Towards Programmable Chemistries -- Studying and Simulating the Three-dimensional Arrangement of Droplets -- Investigating Three-dimensional Arrangements of Droplets. |
Record Nr. | UNISA-996465367503316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial Life and Evolutionary Computation : 14th Italian Workshop, WIVACE 2019, Rende, Italy, September 18–20, 2019, Revised Selected Papers / / edited by Franco Cicirelli, Antonio Guerrieri, Clara Pizzuti, Annalisa Socievole, Giandomenico Spezzano, Andrea Vinci |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (X, 185 p. 61 illus., 45 illus. in color.) |
Disciplina | 003.7 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Artificial intelligence
Computer networks Application software Computer science—Mathematics Computers Artificial Intelligence Computer Communication Networks Information Systems Applications (incl. Internet) Mathematics of Computing Theory of Computation |
ISBN | 3-030-45016-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Towards an Assistive Social Robot Interacting with Human Patient to Establish a Mutual and Effective Support -- Selecting for Positive Responses to Knock outs in Boolean Networks -- Avalanches of Perturbations in Modular Gene Regulatory Networks -- The Effects of a Simplified Model of Chromatin Dynamics on Attractors Robustness in Random Boolean Networks with Self-loops: an Experimental Study -- A Memetic Approach for the Orienteering Problem -- The Detection of Dynamical Organization in Cancer Evolution Models -- The Simulation of Noise Impact on the Dynamics of a Discrete Chaotic Map -- Exploiting Distributed Discrete-Event Simulation Techniques for Parallel Execution of Cellular Automata -- A Relevance Index-based Method for Improved Detection of Malicious Users in Social Networks -- An Analysis of Cooperative Coevolutionary Differential Evolution as Neural Networks Optimizer -- Design and Evaluation of a Heuristic Optimization Tool Based on Evolutionary Grammars Using PSoCs -- How Word Choice Affects Cognitive Impairment Detection by Handwriting Analysis: a Preliminary Study -- Modeling the Coordination of a Multiple Robots Using Nature Inspired Approaches -- Nestedness Temperature in the Agent-Artifact Space: Emergence of Hierarchical Order in the 2000-2014 Photonics Techno-Economic Complex System -- Towards Programmable Chemistries -- Studying and Simulating the Three-dimensional Arrangement of Droplets -- Investigating Three-dimensional Arrangements of Droplets. |
Record Nr. | UNINA-9910413447303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Internet of Things for Smart Urban Ecosystems / / edited by Franco Cicirelli, Antonio Guerrieri, Carlo Mastroianni, Giandomenico Spezzano, Andrea Vinci |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (389 pages) |
Disciplina | 307.760285 |
Collana | Internet of Things, Technology, Communications and Computing |
Soggetto topico |
Signal processing
Image processing Speech processing systems Application software Urban geography Urban economics Signal, Image and Speech Processing Information Systems Applications (incl. Internet) Urban Geography / Urbanism (inc. megacities, cities, towns) Urban Economics |
ISBN | 3-319-96550-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Social and Pervasive IoT Platform for Developing Smart Environments -- Smart City Platform Specification: a modular approach to achieve interoperability in Smart Cities -- Integrated Cyber Physical Assessment and Response for Improved Resiliency -- On the Integration of Information Centric Networking and Fog Computing for Smart Home Services -- Optimal Placement of Security Resources for the Internet of Things -- Embedding Internet-of-Things in Large-Scale Socio-Technical Systems: A Community-Oriented Design in Future Smart Grids -- Aggregation Techniques for the Internet of Things: an overview -- Swarm Intelligence and IoT-based Smart Cities: a Review -- Cost saving and ancillary service provisioning in green Mobile Networks -- Structural Health Monitoring (SHM) -- A Smart air-conditioning plant for efficient energy buildings -- A comprehensive approach to stormwater management problems in the next generation drainage networks -- Cooperative video-surveillance framework in Internet of Things (IoT) domain -- Personal Connected Devices for Healthcare -- Evacuation and Smart Exit Sign System. |
Record Nr. | UNINA-9910337467403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
IoT edge solutions for cognitive buildings / / edited by Franco Cicirelli, [and three others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (354 pages) |
Disciplina | 929.605 |
Collana | Internet of Things |
Soggetto topico | Computer architecture |
ISBN | 3-031-15160-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 COGITO: A Platform for Developing Cognitive Environments -- 1.1 Introduction -- 1.2 The COGITO Platform -- 1.2.1 An Overview of the Platform -- 1.2.2 Developing an Application Over the COGITO Platform -- 1.3 Equipment Deployment -- 1.4 Cognitive Applications for Indoor Environments -- 1.4.1 Thermal Comfort -- 1.4.2 Occupancy Forecast -- 1.4.3 Air Quality -- 1.4.4 Smart Meeting Room -- 1.5 Cognitive Applications for Outdoor Environments -- 1.5.1 Smart Parking -- 1.5.2 Monitoring Weather Conditions -- 1.6 Conclusion -- References -- 2 Cloud, Fog, and Edge Computing for IoT-Enabled Cognitive Buildings -- 2.1 Introduction -- 2.1.1 Background -- 2.2 Cloud Computing -- 2.2.1 Benefits of Cloud Computing -- 2.2.2 Cloud Computing Characteristics -- 2.2.3 Cloud Services Models -- 2.2.4 Cloud Deployment Models -- 2.2.5 Cloud Computing for Smart Building -- 2.3 Edge and Fog Computing -- 2.3.1 Edge Computing Characteristics -- 2.3.2 Fog Computing -- 2.3.2.1 Fog Computing Characteristics -- 2.3.2.2 Fog Computing Services and Deployment Models -- 2.3.3 Fog Computing Versus Edge Computing -- 2.3.4 Edge Computing Versus Cloud Computing -- 2.3.5 Edge and Fog Computing for Smart Buildings -- 2.4 IoT-Enabled Smart Buildings -- 2.4.1 IoT-Enabled Smart Building Model -- 2.4.2 IoT-Enabled Smart Building Components -- 2.4.3 IoT-Enabled Smart Building Design Framework -- 2.4.4 Sample IoT-Enabled Smart Building Scenarios -- 2.4.4.1 HVAC System -- 2.4.4.2 Health Monitoring System -- 2.4.4.3 Remote Monitoring System -- 2.5 Conclusion -- References -- 3 Edge Caching in IoT Smart Environments: Benefits, Challenges, and Research Perspectives Toward 6G -- 3.1 Introduction -- 3.2 Content Distribution in Smart Environments -- 3.2.1 Peculiarities of IoT Contents and Devices -- 3.2.2 Benefits of Edge Caching -- 3.3 Conventional Edge Caching Designs.
3.4 Disruptive Pervasive Edge Caching Solutions -- 3.4.1 NDN in a Nutshell -- 3.4.2 Popularity-Driven Approaches -- 3.4.3 Energy-Driven Solutions -- 3.4.4 Freshness-Driven Caching -- 3.4.4.1 Freshness-Based Only Solutions -- 3.4.4.2 Multi-Criteria Approaches -- 3.5 IoT Data Caching at the Edge Toward 6G -- 3.5.1 NDN and SDN Interplay -- 3.5.2 Joint Computing and Caching -- 3.5.3 AI-Based In-Network Caching Strategies -- 3.6 Conclusions -- References -- 4 Needs Analysis, Protection, and Regulation of the Rights of Individuals and Communities for Urban and Residential Comfort in Cognitive Buildings -- 4.1 Introduction -- 4.2 New Technologies for Outdoor and Indoor Well-Being: The Legal Framework -- 4.3 Multiscalar Analysis of the City of Matera and the Demonstrators of the COGITO Project -- 4.4 An "Ideal" Technology: Reflections from Ethnographic Research -- 4.5 Need Assessment in the Design of a Cognitive System -- 4.6 Effectiveness of the GDPR in the Data Protection System Transformed by New Technologies -- References -- 5 Real Case Studies Toward IoT-Based Cognitive Environments -- 5.1 Introduction -- 5.2 Wireless Sensor Networks and MANs for CoIoTEs -- 5.2.1 Wireless Sensor Networks -- 5.2.2 MAN -- 5.2.3 Applications and Design Challenges -- 5.3 Implementation of the Smart Street Network in the City of Cosenza -- 5.3.1 Description of the Communication Backbone -- 5.3.2 Implementation of the Final Solution -- 5.3.3 The Devices Involved in the Realization of the Smart Street -- 5.4 A VPN ``Hub and Spoke'' for Secure Interconnection of Geographically Distributed Sensor Networks -- 5.4.1 VPN Topology Overview -- 5.4.2 A Secure Sockets Layer VPN -- 5.4.3 Realization of the Peripheral Hub Nodes and the Master Server -- 5.5 Design and Implementation of an Intelligent Video Conferencing System for CoIoTEs -- 5.5.1 The Jitsi Video Conferencing System. 5.5.2 A Web-Based File Manager -- 5.5.3 The Email Processing Component -- 5.6 Conclusions -- References -- 6 Audio Analysis for Enhancing Security in Cognitive Environments Through AI on the Edge -- 6.1 Introduction -- 6.2 Approaches for Audio Recording -- 6.2.1 Array of Microphones -- 6.2.2 Recording Devices -- 6.3 Understanding Audio Recordings -- 6.4 AI in Audio Analysis -- 6.5 AI and Algorithms for Sample Normalization and Audio Understanding -- 6.6 Privacy Implications on Sensitive Data: Defining Minimum Information Content -- 6.7 Analyzing Hardware Devices -- 6.8 Reacting Based on the Information: Actuators -- 6.9 A Complete Implementation -- 6.10 Case Study -- 6.10.1 Free and Restricted Access Room -- 6.10.2 Residential Apartment -- 6.11 Further Improvements/Conclusions -- References -- 7 Aggregate Programming for Customized Building Management and Users Preference Implementation -- 7.1 Introduction -- 7.2 Description of the Brescia Use Case -- 7.2.1 User Preferences and Feedback Collection -- 7.2.2 Sensor Integration Through IoT Paradigm -- 7.3 Aggregate Programming -- 7.4 Aggregate Programming for the Brescia Use Case -- 7.4.1 Users Localization -- 7.4.2 Porting Aggregate Programming to Embedded Systems -- 7.4.3 An AP Case Study Using RTLS -- 7.5 Simulation -- 7.6 Conclusions -- References -- 8 IoT Control-Based Solar Shadings: Advanced Operating Strategy to Optimize Energy Savings and Visual Comfort -- 8.1 Introduction -- 8.2 Materials and Method -- 8.2.1 Sensors and Actuators -- 8.2.2 Operating Control Strategy for Venetian Blinds -- 8.2.2.1 Absence of Occupants -- 8.2.2.2 Presence of Occupants -- 8.3 Analysis of Results -- 8.3.1 Simulation Environment -- 8.3.2 Evaluation of Thermal Gains on an Hourly Basis -- 8.3.2.1 LED System -- 8.3.2.2 Fluorescent Lamps -- 8.3.3 Evaluation of Thermal Gains on a Monthly Basis. 8.3.4 Evaluation of Annual Energy and Economic Savings -- 8.3.4.1 Energy Savings -- 8.3.4.2 Economic Savings -- 8.4 Conclusions -- References -- 9 Room Occupancy Prediction Leveraging LSTM: An Approach for Cognitive and Self-Adapting Buildings -- 9.1 Introduction -- 9.2 Related Work -- 9.3 An Approach for Room Occupancy Prediction for Cognitive and Self-Adapting Building -- 9.3.1 Software Architecture -- 9.3.1.1 Components -- 9.3.1.2 Devices and Virtual Objects -- 9.3.1.3 Application Agents -- 9.3.2 Definition of the Prediction Tasks -- 9.3.3 Data Pre-processing -- 9.3.3.1 Transformation Approach for Non-homogeneous Time Series -- 9.3.4 Networks Training -- 9.3.4.1 LSTM Neural Network -- 9.3.5 Training -- 9.4 Experimental Results -- 9.4.1 Dataset -- 9.4.1.1 Dataset A: Occupancy Detection Dataset -- 9.4.1.2 Dataset B: Experimental Dataset -- 9.4.2 Evaluation Metrics -- 9.4.3 Imbalanced Classification Techniques -- 9.4.3.1 Focal Loss -- 9.4.3.2 Weight Balancing -- 9.4.4 Results -- 9.4.4.1 Task 1: Occupancy Detection -- 9.4.4.2 Task 2: Occupancy Prediction -- 9.5 Conclusion and Future Work -- References -- 10 Edge Intelligence Against COVID-19: A Smart University Campus Case Study -- 10.1 Introduction -- 10.2 Background and Enabling Technologies -- 10.2.1 ACOSO-Meth -- 10.2.2 Uppaal -- 10.2.3 DHT11 -- 10.2.4 Arduino Uno -- 10.2.5 QR Code -- 10.2.6 Raspberry Pi -- 10.2.7 Node-RED -- 10.2.8 MQTT (Message Queue Telemetry Transport) -- 10.2.9 Long Short-Term Memory (LSTM) -- 10.2.10 Docker -- 10.2.11 DigitalOcean -- 10.3 Related Works -- 10.3.1 Monitoring at the End-Device Layer -- 10.3.2 Monitoring at the Edge Layer -- 10.3.3 Monitoring at the Cloud Layer -- 10.4 Project Development -- 10.4.1 Analysis Phase -- 10.4.2 Design Phase -- 10.4.3 Verification and Validation -- 10.4.4 Implementation Phase -- 10.4.5 Deployment and Orchestration -- 10.5 Conclusions. References -- 11 Structural Health Monitoring in Cognitive Buildings -- 11.1 Introduction -- 11.2 Structural Monitoring Techniques -- 11.3 Cognitive Buildings -- 11.4 Case Study -- 11.5 Conclusions and Future Activities -- References -- 12 Development of Indoor Smart Environments Leveraging the Internet of Things and Artificial Intelligence: A Case Study -- 12.1 Introduction -- 12.2 Related Work -- 12.3 Smart Management of Indoor Spaces -- 12.4 Smart Meeting Room Application Components -- 12.4.1 Smart Objects -- 12.4.2 Software Components -- 12.5 Management of the Conference System in Indoor Environments -- 12.5.1 Management of the Booking of the Smart Meeting Room -- 12.5.2 Event Management in the Pre and Start Phases -- 12.5.3 Event Management -- 12.6 Conclusion -- References -- 13 Human-Centered Reinforcement Learning for Lighting and Blind Control in Cognitive Buildings -- 13.1 Introduction -- 13.2 Reinforcement Learning in Control Systems -- 13.3 A Human-Centered RL with a Satisfaction-Based Visual Comfort Model -- 13.4 An RL Model for the Management of the Visual Comfort -- 13.4.1 The State Variables -- 13.4.2 The Decision Variables -- 13.4.3 The Reward Function -- 13.4.4 Q-Learning -- 13.5 Case Study -- 13.6 Conclusions -- References -- 14 Intelligent Load Scheduling in Cognitive Buildings: A Use Case -- 14.1 Introduction -- 14.2 Basic Concepts -- 14.2.1 The COGITO Platform -- 14.2.2 Reinforcement Learning -- 14.2.3 Markov Decision Process -- 14.2.4 The Load Scheduling -- 14.3 Integration Between the COGITO Platform and the Omnia Energia Equipment -- 14.4 The Case Study -- 14.4.1 The Case Study Equipment -- 14.4.2 The Functional Perspective -- 14.4.3 The Underpinning Software Infrastructure -- 14.4.4 Customization of the Omnia Meter -- 14.4.5 The Case Study Dashboard -- 14.5 Conclusion -- References. 15 Cognitive Systems for Energy Efficiency and Thermal Comfort in Smart Buildings. |
Record Nr. | UNINA-9910634039603321 |
Cham, Switzerland : , : Springer, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
IoT edge solutions for cognitive buildings / / edited by Franco Cicirelli, [and three others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (354 pages) |
Disciplina | 929.605 |
Collana | Internet of Things |
Soggetto topico | Computer architecture |
ISBN | 3-031-15160-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 COGITO: A Platform for Developing Cognitive Environments -- 1.1 Introduction -- 1.2 The COGITO Platform -- 1.2.1 An Overview of the Platform -- 1.2.2 Developing an Application Over the COGITO Platform -- 1.3 Equipment Deployment -- 1.4 Cognitive Applications for Indoor Environments -- 1.4.1 Thermal Comfort -- 1.4.2 Occupancy Forecast -- 1.4.3 Air Quality -- 1.4.4 Smart Meeting Room -- 1.5 Cognitive Applications for Outdoor Environments -- 1.5.1 Smart Parking -- 1.5.2 Monitoring Weather Conditions -- 1.6 Conclusion -- References -- 2 Cloud, Fog, and Edge Computing for IoT-Enabled Cognitive Buildings -- 2.1 Introduction -- 2.1.1 Background -- 2.2 Cloud Computing -- 2.2.1 Benefits of Cloud Computing -- 2.2.2 Cloud Computing Characteristics -- 2.2.3 Cloud Services Models -- 2.2.4 Cloud Deployment Models -- 2.2.5 Cloud Computing for Smart Building -- 2.3 Edge and Fog Computing -- 2.3.1 Edge Computing Characteristics -- 2.3.2 Fog Computing -- 2.3.2.1 Fog Computing Characteristics -- 2.3.2.2 Fog Computing Services and Deployment Models -- 2.3.3 Fog Computing Versus Edge Computing -- 2.3.4 Edge Computing Versus Cloud Computing -- 2.3.5 Edge and Fog Computing for Smart Buildings -- 2.4 IoT-Enabled Smart Buildings -- 2.4.1 IoT-Enabled Smart Building Model -- 2.4.2 IoT-Enabled Smart Building Components -- 2.4.3 IoT-Enabled Smart Building Design Framework -- 2.4.4 Sample IoT-Enabled Smart Building Scenarios -- 2.4.4.1 HVAC System -- 2.4.4.2 Health Monitoring System -- 2.4.4.3 Remote Monitoring System -- 2.5 Conclusion -- References -- 3 Edge Caching in IoT Smart Environments: Benefits, Challenges, and Research Perspectives Toward 6G -- 3.1 Introduction -- 3.2 Content Distribution in Smart Environments -- 3.2.1 Peculiarities of IoT Contents and Devices -- 3.2.2 Benefits of Edge Caching -- 3.3 Conventional Edge Caching Designs.
3.4 Disruptive Pervasive Edge Caching Solutions -- 3.4.1 NDN in a Nutshell -- 3.4.2 Popularity-Driven Approaches -- 3.4.3 Energy-Driven Solutions -- 3.4.4 Freshness-Driven Caching -- 3.4.4.1 Freshness-Based Only Solutions -- 3.4.4.2 Multi-Criteria Approaches -- 3.5 IoT Data Caching at the Edge Toward 6G -- 3.5.1 NDN and SDN Interplay -- 3.5.2 Joint Computing and Caching -- 3.5.3 AI-Based In-Network Caching Strategies -- 3.6 Conclusions -- References -- 4 Needs Analysis, Protection, and Regulation of the Rights of Individuals and Communities for Urban and Residential Comfort in Cognitive Buildings -- 4.1 Introduction -- 4.2 New Technologies for Outdoor and Indoor Well-Being: The Legal Framework -- 4.3 Multiscalar Analysis of the City of Matera and the Demonstrators of the COGITO Project -- 4.4 An "Ideal" Technology: Reflections from Ethnographic Research -- 4.5 Need Assessment in the Design of a Cognitive System -- 4.6 Effectiveness of the GDPR in the Data Protection System Transformed by New Technologies -- References -- 5 Real Case Studies Toward IoT-Based Cognitive Environments -- 5.1 Introduction -- 5.2 Wireless Sensor Networks and MANs for CoIoTEs -- 5.2.1 Wireless Sensor Networks -- 5.2.2 MAN -- 5.2.3 Applications and Design Challenges -- 5.3 Implementation of the Smart Street Network in the City of Cosenza -- 5.3.1 Description of the Communication Backbone -- 5.3.2 Implementation of the Final Solution -- 5.3.3 The Devices Involved in the Realization of the Smart Street -- 5.4 A VPN ``Hub and Spoke'' for Secure Interconnection of Geographically Distributed Sensor Networks -- 5.4.1 VPN Topology Overview -- 5.4.2 A Secure Sockets Layer VPN -- 5.4.3 Realization of the Peripheral Hub Nodes and the Master Server -- 5.5 Design and Implementation of an Intelligent Video Conferencing System for CoIoTEs -- 5.5.1 The Jitsi Video Conferencing System. 5.5.2 A Web-Based File Manager -- 5.5.3 The Email Processing Component -- 5.6 Conclusions -- References -- 6 Audio Analysis for Enhancing Security in Cognitive Environments Through AI on the Edge -- 6.1 Introduction -- 6.2 Approaches for Audio Recording -- 6.2.1 Array of Microphones -- 6.2.2 Recording Devices -- 6.3 Understanding Audio Recordings -- 6.4 AI in Audio Analysis -- 6.5 AI and Algorithms for Sample Normalization and Audio Understanding -- 6.6 Privacy Implications on Sensitive Data: Defining Minimum Information Content -- 6.7 Analyzing Hardware Devices -- 6.8 Reacting Based on the Information: Actuators -- 6.9 A Complete Implementation -- 6.10 Case Study -- 6.10.1 Free and Restricted Access Room -- 6.10.2 Residential Apartment -- 6.11 Further Improvements/Conclusions -- References -- 7 Aggregate Programming for Customized Building Management and Users Preference Implementation -- 7.1 Introduction -- 7.2 Description of the Brescia Use Case -- 7.2.1 User Preferences and Feedback Collection -- 7.2.2 Sensor Integration Through IoT Paradigm -- 7.3 Aggregate Programming -- 7.4 Aggregate Programming for the Brescia Use Case -- 7.4.1 Users Localization -- 7.4.2 Porting Aggregate Programming to Embedded Systems -- 7.4.3 An AP Case Study Using RTLS -- 7.5 Simulation -- 7.6 Conclusions -- References -- 8 IoT Control-Based Solar Shadings: Advanced Operating Strategy to Optimize Energy Savings and Visual Comfort -- 8.1 Introduction -- 8.2 Materials and Method -- 8.2.1 Sensors and Actuators -- 8.2.2 Operating Control Strategy for Venetian Blinds -- 8.2.2.1 Absence of Occupants -- 8.2.2.2 Presence of Occupants -- 8.3 Analysis of Results -- 8.3.1 Simulation Environment -- 8.3.2 Evaluation of Thermal Gains on an Hourly Basis -- 8.3.2.1 LED System -- 8.3.2.2 Fluorescent Lamps -- 8.3.3 Evaluation of Thermal Gains on a Monthly Basis. 8.3.4 Evaluation of Annual Energy and Economic Savings -- 8.3.4.1 Energy Savings -- 8.3.4.2 Economic Savings -- 8.4 Conclusions -- References -- 9 Room Occupancy Prediction Leveraging LSTM: An Approach for Cognitive and Self-Adapting Buildings -- 9.1 Introduction -- 9.2 Related Work -- 9.3 An Approach for Room Occupancy Prediction for Cognitive and Self-Adapting Building -- 9.3.1 Software Architecture -- 9.3.1.1 Components -- 9.3.1.2 Devices and Virtual Objects -- 9.3.1.3 Application Agents -- 9.3.2 Definition of the Prediction Tasks -- 9.3.3 Data Pre-processing -- 9.3.3.1 Transformation Approach for Non-homogeneous Time Series -- 9.3.4 Networks Training -- 9.3.4.1 LSTM Neural Network -- 9.3.5 Training -- 9.4 Experimental Results -- 9.4.1 Dataset -- 9.4.1.1 Dataset A: Occupancy Detection Dataset -- 9.4.1.2 Dataset B: Experimental Dataset -- 9.4.2 Evaluation Metrics -- 9.4.3 Imbalanced Classification Techniques -- 9.4.3.1 Focal Loss -- 9.4.3.2 Weight Balancing -- 9.4.4 Results -- 9.4.4.1 Task 1: Occupancy Detection -- 9.4.4.2 Task 2: Occupancy Prediction -- 9.5 Conclusion and Future Work -- References -- 10 Edge Intelligence Against COVID-19: A Smart University Campus Case Study -- 10.1 Introduction -- 10.2 Background and Enabling Technologies -- 10.2.1 ACOSO-Meth -- 10.2.2 Uppaal -- 10.2.3 DHT11 -- 10.2.4 Arduino Uno -- 10.2.5 QR Code -- 10.2.6 Raspberry Pi -- 10.2.7 Node-RED -- 10.2.8 MQTT (Message Queue Telemetry Transport) -- 10.2.9 Long Short-Term Memory (LSTM) -- 10.2.10 Docker -- 10.2.11 DigitalOcean -- 10.3 Related Works -- 10.3.1 Monitoring at the End-Device Layer -- 10.3.2 Monitoring at the Edge Layer -- 10.3.3 Monitoring at the Cloud Layer -- 10.4 Project Development -- 10.4.1 Analysis Phase -- 10.4.2 Design Phase -- 10.4.3 Verification and Validation -- 10.4.4 Implementation Phase -- 10.4.5 Deployment and Orchestration -- 10.5 Conclusions. References -- 11 Structural Health Monitoring in Cognitive Buildings -- 11.1 Introduction -- 11.2 Structural Monitoring Techniques -- 11.3 Cognitive Buildings -- 11.4 Case Study -- 11.5 Conclusions and Future Activities -- References -- 12 Development of Indoor Smart Environments Leveraging the Internet of Things and Artificial Intelligence: A Case Study -- 12.1 Introduction -- 12.2 Related Work -- 12.3 Smart Management of Indoor Spaces -- 12.4 Smart Meeting Room Application Components -- 12.4.1 Smart Objects -- 12.4.2 Software Components -- 12.5 Management of the Conference System in Indoor Environments -- 12.5.1 Management of the Booking of the Smart Meeting Room -- 12.5.2 Event Management in the Pre and Start Phases -- 12.5.3 Event Management -- 12.6 Conclusion -- References -- 13 Human-Centered Reinforcement Learning for Lighting and Blind Control in Cognitive Buildings -- 13.1 Introduction -- 13.2 Reinforcement Learning in Control Systems -- 13.3 A Human-Centered RL with a Satisfaction-Based Visual Comfort Model -- 13.4 An RL Model for the Management of the Visual Comfort -- 13.4.1 The State Variables -- 13.4.2 The Decision Variables -- 13.4.3 The Reward Function -- 13.4.4 Q-Learning -- 13.5 Case Study -- 13.6 Conclusions -- References -- 14 Intelligent Load Scheduling in Cognitive Buildings: A Use Case -- 14.1 Introduction -- 14.2 Basic Concepts -- 14.2.1 The COGITO Platform -- 14.2.2 Reinforcement Learning -- 14.2.3 Markov Decision Process -- 14.2.4 The Load Scheduling -- 14.3 Integration Between the COGITO Platform and the Omnia Energia Equipment -- 14.4 The Case Study -- 14.4.1 The Case Study Equipment -- 14.4.2 The Functional Perspective -- 14.4.3 The Underpinning Software Infrastructure -- 14.4.4 Customization of the Omnia Meter -- 14.4.5 The Case Study Dashboard -- 14.5 Conclusion -- References. 15 Cognitive Systems for Energy Efficiency and Thermal Comfort in Smart Buildings. |
Record Nr. | UNISA-996547955703316 |
Cham, Switzerland : , : Springer, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Smart Monitoring and Control in the Future Internet of Things |
Autore | Guerrieri Antonio |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (206 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
atmospheric
on-line monitoring LoRa embedded system smart environments Internet of Things indoor occupancy machine learning data analysis landslide susceptibility China-Nepal Highway LSTM remote sensing images IoT network traffic monitoring DDoS packet classification indoor localization channel state information device-free passive WiFi fingerprint naive Bayes classification feature fusion posture recognition indoor positioning wireless body area network Kalman filtering multi-sensor combination prognostic and health management integrative framework internet of things convolutional neural network conditioned-based maintenance IoT platform intelligent monitoring robot active CCTV learning model electrical devices classification energy management smart environment architecture blockchain communication constraints decentralized application Ethereum Internet of things sensing and control computational efficiency robotic manipulators hysteresis adaptive control wireless sensor network (WSN) energy ant colony optimization (ACO) routing algorithm quantum-inspired evolutionary algorithms |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557510403321 |
Guerrieri Antonio
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|