top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Power system coherency and model reduction / / Joe H. Chow, editor
Power system coherency and model reduction / / Joe H. Chow, editor
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer Science, 2013
Descrizione fisica 1 online resource (308 p.)
Disciplina 621.31015118
Altri autori (Persone) ChowJ. H <1951-> (Joe H.)
Collana Power Electronics and Power Systems
Soggetto topico Power electronics
Electric power systems
ISBN 1-4614-1803-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Coherency in Power Systems -- Slow Coherency and Aggregation -- Excitation System Aggregation -- A Hybrid Dynamic Equivalent using ANN-based BoundaryMatching Technique -- Krylov Subspace and Balanced Truncation Methods for Power System Model Reduction -- Reduction of Large Power System Models: A Case Study -- Measurement-based Methods for Model Reduction of Power Systems using Synchrophasors -- Selective Modal Analysis -- InterareaMode Analysis for Large Power Systems using Synchrophasor Data.
Record Nr. UNINA-9910437777103321
New York, : Springer Science, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power system dynamics and stability : with synchrophasor measurement and power system toolbox / / Peter W Sauer, M. A Pai, University of Illinois at Urbana-Champaign, United States, Joe H. Chow, Rensselaer Polytechnic Institute, Troy, New York, United States
Power system dynamics and stability : with synchrophasor measurement and power system toolbox / / Peter W Sauer, M. A Pai, University of Illinois at Urbana-Champaign, United States, Joe H. Chow, Rensselaer Polytechnic Institute, Troy, New York, United States
Autore Sauer Peter W.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , [2017]
Descrizione fisica 1 PDF (376 pages)
Disciplina 621.31
Collana Wiley - IEEE
Soggetto topico Electric power system stability
Electric machinery, Synchronous - Mathematical models
Electric power systems - Control
ISBN 1-119-35574-5
1-119-35579-6
1-119-35575-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Table of Contents -- Preface xi -- 1 INTRODUCTION 1 -- 1.1 Background 1 -- 1.2 Physical Structures 2 -- 1.3 Time-Scale Structures 3 -- 1.4 Political Structures 4 -- 1.5 The Phenomena of Interest 6 -- 2 ELECTROMAGNETIC TRANSIENTS 9 -- 2.1 The Fastest Transients 9 -- 2.2 Transmission LineModels 10 -- 2.3 SolutionMethods 15 -- 2.4 Problems 22 -- 3 SYNCHRONOUS MACHINE MODELING 25 -- 3.1 Conventions and Notation 25 -- 3.2 Three-Damper-WindingModel 26 -- 3.3 Transformations and Scaling 28 -- 3.4 The LinearMagnetic Circuit 38 -- 3.5 The NonlinearMagnetic Circuit 45 -- 3.6 Single-Machine Steady State 51 -- 3.7 Operational Impedances and Test Data 56 -- 3.8 Problems 63 -- 4 SYNCHRONOUS MACHINE CONTROL MODELS 67 -- 4.1 Voltage and Speed Control Overview 67 -- 4.2 Exciter Models 68 -- 4.3 Voltage RegulatorModels 73 -- 4.4 TurbineModels 79 -- 4.5 Speed GovernorModels 85 -- 4.6 Problems 88 -- 5 SINGLE-MACHINE DYNAMIC MODELS 91 -- 5.1 Terminal Constraints 1 -- 5.2 TheMulti-Time-Scale Model 95 -- 5.3 Elimination of Stator/Network Transients 97 -- 5.4 The Two-AxisModel 103 -- 5.5 The One-Axis (Flux-Decay) Model 105 -- 5.6 The ClassicalModel 107 -- 5.7 Damping Torques 109 -- 5.8 Single-Machine Infinite-Bus System 114 -- 5.9 SynchronousMachine Saturation 120 -- 5.10 Problems 127 -- 6 MULTIMACHINE DYNAMIC MODELS 129 -- 6.1 The Synchronously Rotating Reference Frame 129 -- 6.2 Network and R-L Load Constraints 132 -- 6.3 Elimination of Stator/Network Transients 134 -- 6.4 Multimachine Two-AxisModel 144 -- 6.5 Multimachine Flux / Decay Model 148 -- 6.6 Multimachine ClassicalModel 151 -- 6.7 Multimachine Damping Torques 154 -- 6.8 MultimachineModels with Saturation 155 -- 6.9 Frequency During Transients 161 -- 6.10 Angle References and an Infinite Bus 162 -- 6.11 Automatic Generation Control (AGC) 164 -- 7 MULTIMACHINE SIMULATION 173 -- 7.1 Differential-Algebraic Model 173 -- 7.2 Stator Algebraic Equations 177 -- 7.3 Network Equations 179 -- 7.4 Industry Model 190 -- 7.5 Simplification of the Two-AxisModel 194.
7.6 Initial Conditions (FullModel) 200 -- 7.7 Numerical Solution: Power-Balance Form 209 -- 7.8 Numerical Solution: Current-Balance Form 214 -- 7.9 Reduced-OrderMultimachineModels 217 -- 7.10 Initial Conditions 227 -- 7.11 Conclusion 229 -- 7.12 Problems 229 -- 8 SMALL-SIGNAL STABILITY 233 -- 8.1 Background 233 -- 8.2 Basic Linearization Technique 234 -- 8.3 Participation Factors 247 -- 8.4 Studies on Parametric Effects 253 -- 8.5 Electromechanical Oscillatory Modes 260 -- 8.6 Power SystemStabilizers 265 -- 8.7 Conclusion 288 -- 8.8 Problems 288 -- 9 ENERGY FUNCTION METHODS 295 -- 9.1 Background 295 -- 9.2 Physical andMathematical Aspects 295 -- 9.3 Lyapunov's Method 299 -- 9.4 Modeling Issues 300 -- 9.5 Energy Function Formulation 302 -- 9.6 Potential Energy Boundary Surface (PEBS) 305 -- 9.7 The Boundary Controlling u.e.p (BCU) Method 322 -- 9.8 Structure-Preserving Energy Functions 328 -- 9.9 Conclusion 329 -- 9.10 Problems 330 -- 10 SYNCHRONIZED PHASOR MEASUREMENT 333 -- 10.1 Background 333 -- 10.2 Phasor Computation 335 -- 10.3 Phasor Data Communication 349 -- 10.4 Power SystemFrequency Response 350 -- 10.5 Power System Disturbance Propagation 354 -- 10.6 Power SystemDisturbance Signatures 361 -- 10.7 Phasor State Estimation 365 -- 10.8 Modal Analyses of Oscillations 371 -- 10.9 Energy Function Analysis 374 -- 10.10Control Design using PMU Data 377 -- 10.11Conclusions and Remarks 381 -- 10.12Problems 382 -- 11 Power System Toolbox 387 -- 11.1 Background 387 -- 11.2 Power Flow Computation 388 -- 11.3 Dynamic Simulation 395 -- 11.4 Linear Analysis . . 408 -- 11.5 Conclusions and Remarks 412 -- 11.6 Problems 413 -- A Integral Manifolds for Model 415 -- A.1 Manifolds and IntegralManifolds 415 -- A.2 IntegralManifolds for Linear Systems 416 -- A.3 IntegralManifolds for Nonlinear Systems 427 -- Bibliography 433.
Record Nr. UNINA-9910271030303321
Sauer Peter W.  
Hoboken, New Jersey, USA : , : Wiley, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power system dynamics and stability : with synchrophasor measurement and power system toolbox / / Peter W Sauer, M. A Pai, University of Illinois at Urbana-Champaign, United States, Joe H. Chow, Rensselaer Polytechnic Institute, Troy, New York, United States
Power system dynamics and stability : with synchrophasor measurement and power system toolbox / / Peter W Sauer, M. A Pai, University of Illinois at Urbana-Champaign, United States, Joe H. Chow, Rensselaer Polytechnic Institute, Troy, New York, United States
Autore Sauer Peter W.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , [2017]
Descrizione fisica 1 PDF (376 pages)
Disciplina 621.31
Collana Wiley - IEEE
Soggetto topico Electric power system stability
Electric machinery, Synchronous - Mathematical models
Electric power systems - Control
ISBN 1-119-35574-5
1-119-35579-6
1-119-35575-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Table of Contents -- Preface xi -- 1 INTRODUCTION 1 -- 1.1 Background 1 -- 1.2 Physical Structures 2 -- 1.3 Time-Scale Structures 3 -- 1.4 Political Structures 4 -- 1.5 The Phenomena of Interest 6 -- 2 ELECTROMAGNETIC TRANSIENTS 9 -- 2.1 The Fastest Transients 9 -- 2.2 Transmission LineModels 10 -- 2.3 SolutionMethods 15 -- 2.4 Problems 22 -- 3 SYNCHRONOUS MACHINE MODELING 25 -- 3.1 Conventions and Notation 25 -- 3.2 Three-Damper-WindingModel 26 -- 3.3 Transformations and Scaling 28 -- 3.4 The LinearMagnetic Circuit 38 -- 3.5 The NonlinearMagnetic Circuit 45 -- 3.6 Single-Machine Steady State 51 -- 3.7 Operational Impedances and Test Data 56 -- 3.8 Problems 63 -- 4 SYNCHRONOUS MACHINE CONTROL MODELS 67 -- 4.1 Voltage and Speed Control Overview 67 -- 4.2 Exciter Models 68 -- 4.3 Voltage RegulatorModels 73 -- 4.4 TurbineModels 79 -- 4.5 Speed GovernorModels 85 -- 4.6 Problems 88 -- 5 SINGLE-MACHINE DYNAMIC MODELS 91 -- 5.1 Terminal Constraints 1 -- 5.2 TheMulti-Time-Scale Model 95 -- 5.3 Elimination of Stator/Network Transients 97 -- 5.4 The Two-AxisModel 103 -- 5.5 The One-Axis (Flux-Decay) Model 105 -- 5.6 The ClassicalModel 107 -- 5.7 Damping Torques 109 -- 5.8 Single-Machine Infinite-Bus System 114 -- 5.9 SynchronousMachine Saturation 120 -- 5.10 Problems 127 -- 6 MULTIMACHINE DYNAMIC MODELS 129 -- 6.1 The Synchronously Rotating Reference Frame 129 -- 6.2 Network and R-L Load Constraints 132 -- 6.3 Elimination of Stator/Network Transients 134 -- 6.4 Multimachine Two-AxisModel 144 -- 6.5 Multimachine Flux / Decay Model 148 -- 6.6 Multimachine ClassicalModel 151 -- 6.7 Multimachine Damping Torques 154 -- 6.8 MultimachineModels with Saturation 155 -- 6.9 Frequency During Transients 161 -- 6.10 Angle References and an Infinite Bus 162 -- 6.11 Automatic Generation Control (AGC) 164 -- 7 MULTIMACHINE SIMULATION 173 -- 7.1 Differential-Algebraic Model 173 -- 7.2 Stator Algebraic Equations 177 -- 7.3 Network Equations 179 -- 7.4 Industry Model 190 -- 7.5 Simplification of the Two-AxisModel 194.
7.6 Initial Conditions (FullModel) 200 -- 7.7 Numerical Solution: Power-Balance Form 209 -- 7.8 Numerical Solution: Current-Balance Form 214 -- 7.9 Reduced-OrderMultimachineModels 217 -- 7.10 Initial Conditions 227 -- 7.11 Conclusion 229 -- 7.12 Problems 229 -- 8 SMALL-SIGNAL STABILITY 233 -- 8.1 Background 233 -- 8.2 Basic Linearization Technique 234 -- 8.3 Participation Factors 247 -- 8.4 Studies on Parametric Effects 253 -- 8.5 Electromechanical Oscillatory Modes 260 -- 8.6 Power SystemStabilizers 265 -- 8.7 Conclusion 288 -- 8.8 Problems 288 -- 9 ENERGY FUNCTION METHODS 295 -- 9.1 Background 295 -- 9.2 Physical andMathematical Aspects 295 -- 9.3 Lyapunov's Method 299 -- 9.4 Modeling Issues 300 -- 9.5 Energy Function Formulation 302 -- 9.6 Potential Energy Boundary Surface (PEBS) 305 -- 9.7 The Boundary Controlling u.e.p (BCU) Method 322 -- 9.8 Structure-Preserving Energy Functions 328 -- 9.9 Conclusion 329 -- 9.10 Problems 330 -- 10 SYNCHRONIZED PHASOR MEASUREMENT 333 -- 10.1 Background 333 -- 10.2 Phasor Computation 335 -- 10.3 Phasor Data Communication 349 -- 10.4 Power SystemFrequency Response 350 -- 10.5 Power System Disturbance Propagation 354 -- 10.6 Power SystemDisturbance Signatures 361 -- 10.7 Phasor State Estimation 365 -- 10.8 Modal Analyses of Oscillations 371 -- 10.9 Energy Function Analysis 374 -- 10.10Control Design using PMU Data 377 -- 10.11Conclusions and Remarks 381 -- 10.12Problems 382 -- 11 Power System Toolbox 387 -- 11.1 Background 387 -- 11.2 Power Flow Computation 388 -- 11.3 Dynamic Simulation 395 -- 11.4 Linear Analysis . . 408 -- 11.5 Conclusions and Remarks 412 -- 11.6 Problems 413 -- A Integral Manifolds for Model 415 -- A.1 Manifolds and IntegralManifolds 415 -- A.2 IntegralManifolds for Linear Systems 416 -- A.3 IntegralManifolds for Nonlinear Systems 427 -- Bibliography 433.
Record Nr. UNINA-9910830724203321
Sauer Peter W.  
Hoboken, New Jersey, USA : , : Wiley, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui