Dynamics of structures : theory and applications to earthquake engineering / / Anil K. Chopra |
Autore | Chopra Anil K. |
Edizione | [Fourth edition.] |
Pubbl/distr/stampa | Harlow, England : , : Pearson Education Limited, , [2014] |
Descrizione fisica | 1 online resource (944 pages) : illustrations, graphs |
Disciplina | 624.1762 |
Collana | Always learning |
Soggetto topico |
Earthquake engineering
Structural dynamics Earthquakes - Engineering |
ISBN |
0-273-77426-3
9780273774242 9780273774266 (e-book) 0-273-77424-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Dedication -- Overview -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I: Single-Degree-of-Freedom Systems -- Chapter 1: Equations of Motion, Problem Statement, and Solution Methods -- Preview -- 1.1 Simple Structures -- 1.2 Single-Degree-of-Freedom System -- 1.3 Force-Displacement Relation -- 1.3.1 Linearly Elastic Systems -- 1.3.2 Inelastic Systems -- 1.4 Damping Force -- 1.5 Equation of Motion: External Force -- 1.5.1 Using Newton's Second Law of Motion -- 1.5.2 Dynamic Equilibrium -- 1.5.3 Stiffness, Damping, and Mass Components -- 1.6 Mass-Spring-Damper System -- 1.7 Equation of Motion: Earthquake Excitation -- 1.8 Problem Statement and Element Forces -- 1.8.1 Problem Statement -- 1.8.2 Element Forces -- 1.9 Combining Static and Dynamic Responses -- 1.10 Methods of Solution of the Differential Equation -- 1.10.1 Classical Solution -- 1.10.2 Duhamel's Integral -- 1.10.3 Frequency-Domain Method -- 1.10.4 Numerical Methods -- 1.11 Study of SDF Systems: Organization -- Appendix 1: Stiffness Coefficients for a Flexural Element -- Chapter 2: Free Vibration -- Preview -- 2.1 Undamped Free Vibration -- 2.2 Viscously Damped Free Vibration -- 2.2.1 Types of Motion -- 2.2.2 Underdamped Systems -- 2.2.3 Decay of Motion -- 2.2.4 Free Vibration Tests -- 2.3 Energy in Free Vibration -- 2.4 Coulomb-Damped Free Vibration -- Chapter 3: Response to Harmonic and Periodic Excitations -- Preview -- Part A: Viscously Damped Systems: Basic Results -- 3.1 Harmonic Vibration of Undamped Systems -- 3.2 Harmonic Vibration with Viscous Damping -- 3.2.1 Steady-State and Transient Responses -- 3.2.2 Response for ω = ωn -- 3.2.3 Maximum Deformation and Phase Lag -- 3.2.4 Dynamic Response Factors -- 3.2.5 Resonant Frequencies and Resonant Responses -- 3.2.6 Half-Power Bandwidth -- 3.2.7 Steady-State Response to Cosine Force.
Part B: Viscously Damped Systems: Applications -- 3.3 Response to Vibration Generator -- 3.3.1 Vibration Generator -- 3.3.2 Structural Response -- 3.4 Natural Frequency and Damping from Harmonic Tests -- 3.4.1 Resonance Testing -- 3.4.2 Frequency-Response Curve -- 3.5 Force Transmission and Vibration Isolation -- 3.6 Response to Ground Motion and Vibration Isolation -- 3.7 Vibration-Measuring Instruments -- 3.7.1 Measurement of Acceleration -- 3.7.2 Measurement of Displacement -- 3.8 Energy Dissipated in Viscous Damping -- 3.9 Equivalent Viscous Damping -- Part C: Systems with Nonviscous Damping -- 3.10 Harmonic Vibration with Rate-Independent Damping -- 3.10.1 Rate-Independent Damping -- 3.10.2 Steady-State Response to Harmonic Force -- 3.10.3 Solution Using Equivalent Viscous Damping -- 3.11 Harmonic Vibration with Coulomb Friction -- 3.11.1 Equation of Motion -- 3.11.2 Steady-State Response to Harmonic Force -- 3.11.3 Solution Using Equivalent Viscous Damping -- Part D: Response to Periodic Excitation -- 3.12 Fourier Series Representation -- 3.13 Response to Periodic Force -- Appendix 3: Four-Way Logarithmic Graph Paper -- Chapter 4: Response to Arbitrary, Step, and Pulse Excitations -- Preview -- Part A: Response to Arbitrarily Time-Varying Forces -- 4.1 Response to Unit Impulse -- 4.2 Response to Arbitrary Force -- Part B: Response to Step and Ramp Forces -- 4.3 Step Force -- 4.4 Ramp or Linearly Increasing Force -- 4.5 Step Force with Finite Rise Time -- Part C: Response to Pulse Excitations -- 4.6 Solution Methods -- 4.7 Rectangular Pulse Force -- 4.8 Half-Cycle Sine Pulse Force -- 4.9 Symmetrical Triangular Pulse Force -- 4.10 Effects of Pulse Shape and Approximate Analysis for Short Pulses -- 4.11 Effects of Viscous Damping -- 4.12 Response to Ground Motion -- Chapter 5: Numerical Evaluation of Dynamic Response -- Preview. 5.1 Time-Stepping Methods -- 5.2 Methods Based on Interpolation of Excitation -- 5.3 Central Difference Method -- 5.4 Newmark's Method -- 5.4.1 Basic Procedure -- 5.4.2 Special Cases -- 5.4.3 Linear Systems -- 5.5 Stability and Computational Error -- 5.5.1 Stability -- 5.5.2 Computational Error -- 5.6 Nonlinear Systems: Central Difference Method -- 5.7 Nonlinear Systems: Newmark's Method -- 5.7.1 Newton-Raphson Iteration -- 5.7.2 Newmark's Method -- Chapter 6: Earthquake Response of Linear Systems -- Preview -- 6.1 Earthquake Excitation -- 6.2 Equation of Motion -- 6.3 Response Quantities -- 6.4 Response History -- 6.5 Response Spectrum Concept -- 6.6 Deformation, Pseudo-Velocity, and Pseudo-Acceleration Response Spectra -- 6.6.1 Deformation Response Spectrum -- 6.6.2 Pseudo-velocity Response Spectrum -- 6.6.3 Pseudo-acceleration Response Spectrum -- 6.6.4 Combined D-V-A Spectrum -- 6.6.5 Construction of Response Spectrum -- 6.7 Peak Structural Response from the Response Spectrum -- 6.8 Response Spectrum Characteristics -- 6.9 Elastic Design Spectrum -- 6.10 Comparison of Design and Response Spectra -- 6.11 Distinction between Design and Response Spectra -- 6.12 Velocity and Acceleration Response Spectra -- 6.12.1 Pseudo-velocity and Relative-velocity Spectra -- 6.12.2 Pseudo-acceleration and Acceleration Spectra -- Appendix 6: El Centro, 1940 Ground Motion -- Chapter 7: Earthquake Response of Inelastic Systems -- Preview -- 7.1 Force-Deformation Relations -- 7.1.1 Laboratory Tests -- 7.1.2 Elastoplastic Idealization -- 7.1.3 Corresponding Linear System -- 7.2 Normalized Yield Strength, Yield Strength Reduction Factor, and Ductility Factor -- 7.3 Equation of Motion and Controlling Parameters -- 7.4 Effects of Yielding -- 7.4.1 Response History -- 7.4.2 Ductility Demand, Peak Deformations, and Normalized Yield Strength. 7.5 Response Spectrum for Yield Deformation and Yield Strength -- 7.5.1 Definitions -- 7.5.2 Yield Strength for Specified Ductility -- 7.5.3 Construction of Constant-Ductility Response Spectrum -- 7.6 Yield Strength and Deformation from the Response Spectrum -- 7.7 Yield Strength-Ductility Relation -- 7.8 Relative Effects of Yielding and Damping -- 7.9 Dissipated Energy -- 7.10 Supplemental Energy Dissipation Devices -- 7.10.1 Fluid Viscous and Viscoelastic Dampers -- 7.10.2 Metallic Yielding Dampers -- 7.10.3 Friction Dampers -- 7.11 Inelastic Design Spectrum -- 7.11.1 Ry-μ-Tn Equations -- 7.11.2 Construction of Constant-Ductility Design Spectrum -- 7.11.3 Equations Relating fy to fo and um to uo -- 7.12 Applications of the Design Spectrum -- 7.12.1 Structural Design for Allowable Ductility -- 7.12.2 Evaluation of an Existing Structure -- 7.12.3 Displacement-Based Structural Design -- 7.13 Comparison of Design and Response Spectra -- Chapter 8: Generalized Single-Degree-of-Freedom Systems -- Preview -- 8.1 Generalized SDF Systems -- 8.2 Rigid-Body Assemblages -- 8.3 Systems with Distributed Mass and Elasticity -- 8.3.1 Assumed Shape Function -- 8.3.2 Equation of Motion -- 8.3.3 Natural Vibration Frequency -- 8.3.4 Response Analysis -- 8.3.5 Peak Earthquake Response -- 8.3.6 Applied Force Excitation -- 8.4 Lumped-Mass System: Shear Building -- 8.4.1 Assumed Shape Vector -- 8.4.2 Equation of Motion -- 8.4.3 Response Analysis -- 8.5 Natural Vibration Frequency by Rayleigh's Method -- 8.5.1 Mass-Spring System -- 8.5.2 Systems with Distributed Mass and Elasticity -- 8.5.3 Systems with Lumped Masses -- 8.5.4 Properties of Rayleigh's Quotient -- 8.6 Selection of Shape Function -- Appendix 8: Inertia Forces for Rigid Bodies -- Part II: Multi-Degree-of-Freedom Systems -- Chapter 9: Equations of Motion, Problem Statement, and Solution Methods -- Preview. 9.1 Simple System: Two-Story Shear Building -- 9.1.1 Using Newton's Second Law of Motion -- 9.1.2 Dynamic Equilibrium -- 9.1.3 Mass-Spring-Damper System -- 9.1.4 Stiffness, Damping, and Mass Components -- 9.2 General Approach for Linear Systems -- 9.2.1 Discretization -- 9.2.2 Elastic Forces -- 9.2.3 Damping Forces -- 9.2.4 Inertia Forces -- 9.2.5 Equations of Motion: External Forces -- 9.3 Static Condensation -- 9.4 Planar or Symmetric-Plan Systems: Ground Motion -- 9.4.1 Planar Systems: Translational Ground Motion -- 9.4.2 Symmetric-Plan Buildings: Translational Ground Motion -- 9.4.3 Planar Systems: Rotational Ground Motion -- 9.5 One-Story Unsymmetric-Plan Buildings -- 9.5.1 Two-Way Unsymmetric System -- 9.5.2 One-Way Unsymmetric System -- 9.5.3 Symmetric System -- 9.6 Multistory Unsymmetric-Plan Buildings -- 9.6.1 One-Way Unsymmetric-Plan Buildings -- 9.7 Multiple Support Excitation -- 9.8 Inelastic Systems -- 9.9 Problem Statement -- 9.10 Element Forces -- 9.11 Methods for Solving the Equations of Motion: Overview -- Chapter 10: Free Vibration -- Preview -- Part A: Natural Vibration Frequencies and Modes -- 10.1 Systems without Damping -- 10.2 Natural Vibration Frequencies and Modes -- 10.3 Modal and Spectral Matrices -- 10.4 Orthogonality of Modes -- 10.5 Interpretation of Modal Orthogonality -- 10.6 Normalization of Modes -- 10.7 Modal Expansion of Displacements -- Part B: Free Vibration Response -- 10.8 Solution of Free Vibration Equations: Undamped Systems -- 10.9 Systems with Damping -- 10.10 Solution of Free Vibration Equations: Classically Damped Systems -- Part C: Computation of Vibration Properties -- 10.11 Solution Methods for the Eigenvalue Problem -- 10.12 Rayleigh's Quotient -- 10.13 Inverse Vector Iteration Method -- 10.13.1 Basic Concept and Procedure -- 10.13.2 Convergence of Iteration -- 10.13.3 Evaluation of Higher Modes. 10.14 Vector Iteration with Shifts: Preferred Procedure. |
Record Nr. | UNINA-9910151648603321 |
Chopra Anil K. | ||
Harlow, England : , : Pearson Education Limited, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Earthquake engineering for concrete dams : analysis, design, and evaluation / / Anil K. Chopra |
Autore | Chopra Anil K. |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Oxford, United Kingdom : , : Wiley-Blackwell, , 2020 |
Descrizione fisica | 1 online resource (316 pages) |
Disciplina | 624.1762 |
Soggetto topico |
Concrete dams - Earthquake effects
Dam safety Earthquake engineering Earthquake hazard analysis |
ISBN |
1-119-05609-8
1-119-05604-7 1-119-05610-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910554873603321 |
Chopra Anil K. | ||
Hoboken, New Jersey ; ; Oxford, United Kingdom : , : Wiley-Blackwell, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Earthquake engineering for concrete dams : analysis, design, and evaluation / / Anil K. Chopra |
Autore | Chopra Anil K. |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; Oxford, United Kingdom : , : Wiley-Blackwell, , 2020 |
Descrizione fisica | 1 online resource (316 pages) |
Disciplina | 624.1762 |
Soggetto topico |
Concrete dams - Earthquake effects
Dam safety Earthquake engineering Earthquake hazard analysis |
ISBN |
1-119-05609-8
1-119-05604-7 1-119-05610-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910809181703321 |
Chopra Anil K. | ||
Hoboken, New Jersey ; ; Oxford, United Kingdom : , : Wiley-Blackwell, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|