Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 511.322 |
Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
Collana | Lecture notes series / Institute for Mathematical Sciences, National University of Singapore |
Soggetto topico |
Recursion theory
Set theory Infinite |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-93434-8
9786611934347 981-279-405-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ̈of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures
3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4. 4.3. Persistence and reection 4.4. Generic persistence; 4.5. Denability of automorphisms of D; 4.6. Invariance of the double jump; 5. Denability in D; 5.1. Bi-interpretability; 6. The Turing jump; 6.1. Recursive enumerability; References; Set Theory Tutorials; Derived Models Associated to Mice John R. Steel; 1. Introduction; 2. Some background and preliminaries; 2.1. Homogeneously Suslin sets; 2.2. Hom1 iteration strategies; 2.3. The derived model; 2.4. Iterations to make RV = R; 2.5. Premice over a set; 3. Iteration independence for derived models of mice 4. Mouse operators and jump operators 5. The mouse set conjecture in D(M; ); 6. The Solovay sequence in D(M; ); 7. The -transform; 8. A long Solovay sequence; 9. The mouse set conjectures: Framework of the induction; 10. The background universe N; 11. The L[E]-model Nx; 12. Two hybrid mouse operators at 0; 13. New mice modulo (y); 15. The consistency strength of AD+ + 0 <; 16. Global MSC implies the local MSC; 17. MSC implies capturing via R-mice; References; Tutorial Outline: Suitable Extender Sequences W. Hugh Woodin; 1. Introduction; 2. Generalized iteration trees 2.1. Long extenders |
Record Nr. | UNINA-9910452972103321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational prospects of infinity [[electronic resource] ] . Part I Tutorials / / editors, Chitat Chong ... [et al.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 511.322 |
Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
Collana | Lecture notes series / Institute for Mathematical Sciences, National University of Singapore |
Soggetto topico |
Recursion theory
Set theory Infinite |
ISBN |
1-281-93434-8
9786611934347 981-279-405-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ̈of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures
3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4. 4.3. Persistence and reection 4.4. Generic persistence; 4.5. Denability of automorphisms of D; 4.6. Invariance of the double jump; 5. Denability in D; 5.1. Bi-interpretability; 6. The Turing jump; 6.1. Recursive enumerability; References; Set Theory Tutorials; Derived Models Associated to Mice John R. Steel; 1. Introduction; 2. Some background and preliminaries; 2.1. Homogeneously Suslin sets; 2.2. Hom1 iteration strategies; 2.3. The derived model; 2.4. Iterations to make RV = R; 2.5. Premice over a set; 3. Iteration independence for derived models of mice 4. Mouse operators and jump operators 5. The mouse set conjecture in D(M; ); 6. The Solovay sequence in D(M; ); 7. The -transform; 8. A long Solovay sequence; 9. The mouse set conjectures: Framework of the induction; 10. The background universe N; 11. The L[E]-model Nx; 12. Two hybrid mouse operators at 0; 13. New mice modulo (y); 15. The consistency strength of AD+ + 0 <; 16. Global MSC implies the local MSC; 17. MSC implies capturing via R-mice; References; Tutorial Outline: Suitable Extender Sequences W. Hugh Woodin; 1. Introduction; 2. Generalized iteration trees 2.1. Long extenders |
Record Nr. | UNINA-9910782357403321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational prospects of infinity . Part I Tutorials / / editors, Chitat Chong ... [et al.] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 511.322 |
Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
Collana | Lecture notes series / Institute for Mathematical Sciences, National University of Singapore |
Soggetto topico |
Recursion theory
Set theory Infinite |
ISBN |
1-281-93434-8
9786611934347 981-279-405-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Foreword; Preface; Recursion Theory Tutorials; Five Lectures on Algorithmic Randomness Rod Downey; 1. Introduction; 2. Lecture 1: Kolmogorov complexity basics; 2.1. Plain complexity; 2.2. Symmetry of Information; 2.3. Pre.x-free complexity; 2.4. The Coding Theorem; 2.5. Pre.x-free symmetry of information; 2.6. Pre.x-free randomness; 2.7. The overgraph functions; 3. Lecture 2: Randomness for reals; 3.1. Martin-L ̈of randomness; 3.2. Schnorr's Theorem and the computational paradigm; 3.3. Martingales and the prediction paradigm; 3.4. Super martingales and continuous semimeasures
3.5. Schnorr and computable randomness 4. Lecture 3: Randomness in general; 4.1. The de Leeuw, Moore, Shannon, Shapiro Theorem, and Sacks' Theorem; 4.2. Coding into randoms; 4.3. Kucera Coding; 4.4. n-randomness; 4.5. Notes on 2-randoms; 4.6. Kucera strikes again; 4.7. van Lambalgen's Theorem; 4.8. Effective 0-1 Laws; 4.9. Omega operators; 5. Lecture 4: Calibrating randomness; 5.1. Measures of relative randomness and the Kucera-Slaman Theorem; 5.2. The Density Theorem; 5.3. Other measures of relative randomness; 5.4. 4.3. Persistence and reection 4.4. Generic persistence; 4.5. Denability of automorphisms of D; 4.6. Invariance of the double jump; 5. Denability in D; 5.1. Bi-interpretability; 6. The Turing jump; 6.1. Recursive enumerability; References; Set Theory Tutorials; Derived Models Associated to Mice John R. Steel; 1. Introduction; 2. Some background and preliminaries; 2.1. Homogeneously Suslin sets; 2.2. Hom1 iteration strategies; 2.3. The derived model; 2.4. Iterations to make RV = R; 2.5. Premice over a set; 3. Iteration independence for derived models of mice 4. Mouse operators and jump operators 5. The mouse set conjecture in D(M; ); 6. The Solovay sequence in D(M; ); 7. The -transform; 8. A long Solovay sequence; 9. The mouse set conjectures: Framework of the induction; 10. The background universe N; 11. The L[E]-model Nx; 12. Two hybrid mouse operators at 0; 13. New mice modulo (y); 15. The consistency strength of AD+ + 0 <; 16. Global MSC implies the local MSC; 17. MSC implies capturing via R-mice; References; Tutorial Outline: Suitable Extender Sequences W. Hugh Woodin; 1. Introduction; 2. Generalized iteration trees 2.1. Long extenders |
Record Nr. | UNINA-9910813457003321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Infinity and truth / / editors, Chitat Chong, National University of Singapore, Singapore [and three others] |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (245 p.) |
Disciplina | 510.1 |
Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Logic, Symbolic and mathematical
Mathematics - Philosophy Set theory Axiomatic set theory |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4571-04-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | section I. Invited lectures -- section II. Special session. |
Record Nr. | UNINA-9910453657003321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Infinity and truth / / editors, Chitat Chong, Qi Feng, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (ix, 234 pages) : illustrations |
Disciplina | 510.1 |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Logic, Symbolic and mathematical
Mathematics - Philosophy Set theory Axiomatic set theory |
ISBN | 981-4571-04-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | section I. Invited lectures -- section II. Special session. |
Record Nr. | UNINA-9910790975603321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Infinity and truth / / editors, Chitat Chong, Qi Feng, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (ix, 234 pages) : illustrations |
Disciplina | 510.1 |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Logic, Symbolic and mathematical
Mathematics - Philosophy Set theory Axiomatic set theory |
ISBN | 981-4571-04-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | section I. Invited lectures -- section II. Special session. |
Record Nr. | UNINA-9910808018803321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; edited by Chitat Chong, National University of Singapore, Singapore [and four others] |
Autore | Todorcevic Stevo |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (234 p.) |
Disciplina | 511.3 |
Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Forcing (Model theory)
Axioms Baire classes |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4571-58-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method - a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces
3.2 Analytic and co-analytic sets 3.3 Analytic and co-analytic sets under p > ω1; 4 Consequences in Measure Theory; 4.1 Measure spaces; 4.2 More on measure spaces; 5 Variations on the Souslin Hypothesis; 5.1 The countable chain condition; 5.2 The Souslin Hypothesis; 5.3 A selective ultrafilter from m > ω1; 5.4 The countable chain condition versus the separability; 6 The S-spaces and the L-spaces; 6.1 Hereditarily separable and hereditarily Lindelof spaces; 6.2 Countable tightness and the S- and L-space problems; 7 The Side-condition Method; 7.1 Elementary submodels as side conditions 7.2 Open graph axiom 8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz 16 Cardinal Arithmetic and mm 16.1 mm and the continuum; 16.2 mm and cardinal arithmetic above the continuum; 17 Reflection Principles; 17.1 Strong reflection of stationary sets; 17.2 Weak reflection of stationary sets; 17.3 Open stationary set-mapping reflection; Appendix A Basic Notions; A.1 Set theoretic notions; A.2 Δ-systems and free sets; A.3 Topological notions; A.4 Boolean algebras; Appendix B Preserving Stationary Sets; B.1 Stationary sets; B.2 Partial orders, Boolean algebras and topological spaces; B.3 A topological translation of stationary set preserving Appendix C Historical and Other Comments |
Record Nr. | UNINA-9910453611103321 |
Todorcevic Stevo | ||
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; editors, Chitat Chong, Qi Feng, Yue Yang, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA |
Autore | Todorcevic Stevo |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (xiii, 219 pages) : illustrations |
Disciplina | 511.3 |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Forcing (Model theory)
Axioms Baire classes |
ISBN | 981-4571-58-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method - a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces
3.2 Analytic and co-analytic sets 3.3 Analytic and co-analytic sets under p > ω1; 4 Consequences in Measure Theory; 4.1 Measure spaces; 4.2 More on measure spaces; 5 Variations on the Souslin Hypothesis; 5.1 The countable chain condition; 5.2 The Souslin Hypothesis; 5.3 A selective ultrafilter from m > ω1; 5.4 The countable chain condition versus the separability; 6 The S-spaces and the L-spaces; 6.1 Hereditarily separable and hereditarily Lindelof spaces; 6.2 Countable tightness and the S- and L-space problems; 7 The Side-condition Method; 7.1 Elementary submodels as side conditions 7.2 Open graph axiom 8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz 16 Cardinal Arithmetic and mm 16.1 mm and the continuum; 16.2 mm and cardinal arithmetic above the continuum; 17 Reflection Principles; 17.1 Strong reflection of stationary sets; 17.2 Weak reflection of stationary sets; 17.3 Open stationary set-mapping reflection; Appendix A Basic Notions; A.1 Set theoretic notions; A.2 Δ-systems and free sets; A.3 Topological notions; A.4 Boolean algebras; Appendix B Preserving Stationary Sets; B.1 Stationary sets; B.2 Partial orders, Boolean algebras and topological spaces; B.3 A topological translation of stationary set preserving Appendix C Historical and Other Comments |
Record Nr. | UNINA-9910790973803321 |
Todorcevic Stevo | ||
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; editors, Chitat Chong, Qi Feng, Yue Yang, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA |
Autore | Todorcevic Stevo |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (xiii, 219 pages) : illustrations |
Disciplina | 511.3 |
Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
Soggetto topico |
Forcing (Model theory)
Axioms Baire classes |
ISBN | 981-4571-58-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method - a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces
3.2 Analytic and co-analytic sets 3.3 Analytic and co-analytic sets under p > ω1; 4 Consequences in Measure Theory; 4.1 Measure spaces; 4.2 More on measure spaces; 5 Variations on the Souslin Hypothesis; 5.1 The countable chain condition; 5.2 The Souslin Hypothesis; 5.3 A selective ultrafilter from m > ω1; 5.4 The countable chain condition versus the separability; 6 The S-spaces and the L-spaces; 6.1 Hereditarily separable and hereditarily Lindelof spaces; 6.2 Countable tightness and the S- and L-space problems; 7 The Side-condition Method; 7.1 Elementary submodels as side conditions 7.2 Open graph axiom 8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz 16 Cardinal Arithmetic and mm 16.1 mm and the continuum; 16.2 mm and cardinal arithmetic above the continuum; 17 Reflection Principles; 17.1 Strong reflection of stationary sets; 17.2 Weak reflection of stationary sets; 17.3 Open stationary set-mapping reflection; Appendix A Basic Notions; A.1 Set theoretic notions; A.2 Δ-systems and free sets; A.3 Topological notions; A.4 Boolean algebras; Appendix B Preserving Stationary Sets; B.1 Stationary sets; B.2 Partial orders, Boolean algebras and topological spaces; B.3 A topological translation of stationary set preserving Appendix C Historical and Other Comments |
Record Nr. | UNINA-9910820245903321 |
Todorcevic Stevo | ||
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Proceedings of the 11th Asian Logic Conference [[electronic resource] ] : in honor of Professor Chong Chitat on his 60th birthday, National University of Singapore, Singapore, 22-27 June 2009 / / edited by Toshiyasu Arai ... [et al.] |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2012 |
Descrizione fisica | 1 online resource (192 p.) |
Disciplina | 511.3 |
Altri autori (Persone) |
ChongC.-T <1949-> (Chi-Tat)
AraiT (Toshiyasu) |
Soggetto topico | Logic, Symbolic and mathematical |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-43396-6
9786613433961 981-4360-54-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Organizing Committees; CONTENTS; Provably 02 and Weakly Descending Chains T. Arai; 1. Introduction; 2. Provably in; 2.1. Infinitary derivations; 2.2. Searching witnesses of Σ in derivations; 2.3. Provably Σ -functions; 3. Provably in EA; A. Nested limit existence rules; References; Amalgamation, Absoluteness, and Categoricity J. Baldwin; 1. The Universe is Wide or Deep; 2. Abstract Elementary Classes; 3. From L to First Order; 4. The Conjecture for L; 5. Absoluteness of Properties of Atomic Classes; 6. Complexity; 7. Conclusion
8. Appendix: Basic definability notions for L by David MarkerReferences; K-Trivials are Never Continuously Random G. Barmpalias, N. Greenberg, A. Montalb n and T. Slaman; 1. Introduction; 1.1. Randomness relative to continuous measures; 1.2. K-triviality; 1.3. Our results; 2. K-trivial sets and NCR; Action of requirement Rn; 3. Incomplete r.e. degrees and NCR; References; Limitwise Monotonic Functions and Their Applications R. Downey, A. Kach and D. Turetsky; 1. Introduction; 2. Limitwise Monotonic Functions and Sets; 3. Applications of Limitwise Monotonic Functions and Sets 4. Relativized Limitwise Monotonicity5. Beyond Limitwise Monotonicity; 6. Limitwise Monotonic Spectra; 7. Open Questions; References; A Dichotomy for the Mackey Borel Structure I. Farah; States; 1. Proof of Theorem 1; 2. Concluding Remarks; References; On Automatic Families S. Jain, Y. Ong, Sh. Pu and F. Stephan; 1. Introduction; 2. The Size of Languages Inside a Family; 3. Universal Complexity Measures; 4. Characterising Automatic Families; 5. Applications of Automatic Families in Learning Theory; References; Cappable CEA Sets and Ramsey's Theorem A. Kach, M. Lerman and R. Solomon 1. Introduction2. SRT and c-cappability; The Construction; References; Computable Dowd-Type Generic Oracles M. Kumabe and T. Suzuki; 1. Introduction; 2. Notation; 2.1. Strings and sets; 2.2. Probability; 2.3. Dowd-type generic oracles; 3. Review of the Former Results; 3.1. Review of our former paper; 3.2. Comments on our former paper; 4. The Case where r is Fixed; 5. Proof of Main Theorem; Acknowledgments; References; Models of Long Sentences I G. Sacks; 1. Introduction; 2. 1 Substructures; 3. Akin to -Saturation; 4. Proof of the Main Result; 5. Extensions of MR and MR+ 5.1. The number of models5.2. Atomic theories; 5.3. L; 6. Stability, Type-Completeness and Type-Admissibility; References; A Universally Free Modal Logic S. Yang; 1. Some Presuppositions for a Na ve Metaphysical Conception of Modality and de re Constructions; 2. A Syntactic Treatment of de re Constructions; 3. The Underlying System IQ: A System of Universally Free Logic with Rigid Designators; 4. A Quantified Modal System with Rigid Designators: A Natural Modal System IQS5; 5. A Modal System with Names as Constant Quantifiers; References; Author Index |
Record Nr. | UNINA-9910457267603321 |
Hackensack, N.J., : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|