A method to estimate canal leakage to the Biscayne Aquifer, Dade County, Florida / / by David A. Chin ; prepared in cooperation with the South Florida Water Management District and Metro-Dade Environmental Resources Management
| A method to estimate canal leakage to the Biscayne Aquifer, Dade County, Florida / / by David A. Chin ; prepared in cooperation with the South Florida Water Management District and Metro-Dade Environmental Resources Management |
| Autore | Chin David A. |
| Pubbl/distr/stampa | Tallahasse, Florida : , : U.S. Geological Survey, , 1990 |
| Descrizione fisica | 1 online resource (v, 32 pages) : illustrations, map |
| Collana | Water-resources investigations report |
| Soggetto topico |
Canals - Florida - Miami-Dade County
Water leakage - Florida - Miami-Dade County - Measurement Groundwater - Florida - Miami-Dade County Canals Groundwater |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910715351603321 |
Chin David A.
|
||
| Tallahasse, Florida : , : U.S. Geological Survey, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Water-resources engineering / / David A. Chin
| Water-resources engineering / / David A. Chin |
| Autore | Chin David A. |
| Edizione | [Third, international edition.] |
| Pubbl/distr/stampa | Boston : , : Pearson, , [2013] |
| Descrizione fisica | 1 online resource (957 p.) : ill |
| Disciplina | 627 |
| Collana | Always learning |
| Soggetto topico | Hydraulics |
| ISBN |
9780273785927 (e-book)
9780273785910 (pbk.) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Contents -- Preface -- 1 Introduction -- 1.1 Water-Resources Engineering -- 1.2 The Hydrologic Cycle -- 1.3 Designof Water-Resource Systems -- 1.3.1 Water-Control Systems -- 1.3.2 Water-Use Systems -- 1.3.3 Supporting Federal Agencies in the United States -- Problem -- 2 Fundamentals of Flow in Closed Conduits -- 2.1 Introduction -- 2.2 Single Pipelines -- 2.2.1 Steady-State Continuity Equation -- 2.2.2 Steady-State Momentum Equation -- 2.2.3 Steady-State Energy Equation -- 2.2.3.1 Energy and hydraulic grade lines -- 2.2.3.2 Velocity profile -- 2.2.3.3 Head losses in transitions and fittings -- 2.2.3.4 Head losses in noncircular conduits -- 2.2.3.5 Empirical friction-loss formulae -- 2.2.4 Water Hammer -- 2.3 Pipe Networks -- 2.3.1 Nodal Method -- 2.3.2 Loop Method -- 2.3.3 Application of Computer Programs -- 2.4 Pumps -- 2.4.1 AffinityLaws -- 2.4.2 Pump Selection -- 2.4.2.1 Commercially available pumps -- 2.4.2.2 System characteristics -- 2.4.2.3 Limits on pump location -- 2.4.3 Multiple-Pump Systems -- 2.4.4 Variable-Speed Pumps -- Problems -- 3 Design of Water-Distribution Systems -- 3.1 Introduction -- 3.2 Water Demand -- 3.2.1 Per-Capita Forecast Model -- 3.2.1.1 Estimation of per-capita demand -- 3.2.1.2 Estimation of population -- 3.2.2 Temporal Variations in Water Demand -- 3.2.3 Fire Demand -- 3.2.4 Design Flows -- 3.3 Components of Water-Distribution Systems -- 3.3.1 Pipelines -- 3.3.1.1 Minimumsize -- 3.3.1.2 Service lines -- 3.3.1.3 Pipe materials -- 3.3.2 Pumps -- 3.3.3 Valves -- 3.3.4 Meters -- 3.3.5 Fire Hydrants -- 3.3.6 Water-Storage Reservoirs -- 3.4 Performance Criteria for Water-Distribution Systems -- 3.4.1 Service Pressures -- 3.4.2 Allowable Velocities -- 3.4.3 Water Quality -- 3.4.4 Network Analysis -- 3.5 Building Water-Supply Systems -- 3.5.1 Specification of Design Flows.
3.5.2 Specification of Minimum Pressures -- 3.5.3 Determination of Pipe Diameters -- Problems -- 4 Fundamentals of Flow in Open Channels -- 4.1 Introduction -- 4.2 Basic Principles -- 4.2.1 Steady-State Continuity Equation -- 4.2.2 Steady-State Momentum Equation -- 4.2.2.1 Darcy-Weisbach equation -- 4.2.2.2 Manning equation -- 4.2.2.3 Other equations -- 4.2.2.4 Velocity distribution -- 4.2.3 Steady-State Energy Equation -- 4.2.3.1 Energy grade line -- 4.2.3.2 Specific energy -- 4.3 Water-Surface Profiles -- 4.3.1 Profile Equation -- 4.3.2 Classification of Water-Surface Profiles -- 4.3.3 Hydraulic Jump -- 4.3.4 Computation of Water-Surface Profiles -- 4.3.4.1 Direct-integration method -- 4.3.4.2 Direct-step method -- 4.3.4.3 Standard-step method -- 4.3.4.4 Practical considerations -- 4.3.4.5 Profiles across bridges -- Problems -- 5 Design of Drainage Channels -- 5.1 Introduction -- 5.2 Basic Principles -- 5.2.1 Best Hydraulic Section -- 5.2.2 Boundary Shear Stress -- 5.2.3 Cohesive versus Noncohesive Materials -- 5.2.4 Bends -- 5.2.5 Channel Slopes -- 5.2.6 Freeboard -- 5.3 Design of Channels with Rigid Linings -- 5.4 Design of Channels with Flexible Linings -- 5.4.1 General Design Procedure -- 5.4.2 Vegetative Linings and Bare Soil -- 5.4.3 RECP Linings -- 5.4.4 Riprap, Cobble, and Gravel Linings -- 5.4.5 Gabions -- 5.5 CompositeLinings -- Problems -- 6 Design of Sanitary Sewers -- 6.1 Introduction -- 6.2 Quantity of Wastewater -- 6.2.1 Residential Sources -- 6.2.2 Nonresidential Sources -- 6.2.3 Inflow and Infiltration (I/I) -- 6.2.4 Peaking Factors -- 6.3 Hydraulics of Sewers -- 6.3.1 Manning Equation with Constant n -- 6.3.2 Manning Equation with Variable n -- 6.3.3 Self-Cleansing -- 6.3.4 Scour Prevention -- 6.3.5 Design Computations for Diameter and Slope -- 6.3.6 Hydraulics of Manholes -- 6.4 System Design Criteria -- 6.4.1 System Layout. 6.4.2 Pipe Material -- 6.4.3 Depth of Sanitary Sewer -- 6.4.4 Diameter and Slope of Pipes -- 6.4.5 Hydraulic Criteria -- 6.4.6 Manholes -- 6.4.7 Pump Stations -- 6.4.8 Force Mains -- 6.4.9 Hydrogen-Sulfide Control -- 6.4.10 Combined Sewers -- 6.5 Design Computations -- 6.5.1 Design Aids -- 6.5.1.1 Manning's n -- 6.5.1.2 Minimum slope for self-cleansing -- 6.5.2 Procedure for System Design -- Problems -- 7 Design of Hydraulic Structures -- 7.1 Introduction -- 7.2 Culverts -- 7.2.1 Hydraulics -- 7.2.1.1 Submerged entrances -- 7.2.1.2 Unsubmerged entrances -- 7.2.2 Design Constraints -- 7.2.3 Sizing Calculations -- 7.2.3.1 Fixed-headwater method -- 7.2.3.2 Fixed-flow method -- 7.2.3.3 Minimum-performance method -- 7.2.4 Roadway Overtopping -- 7.2.5 Riprap/Outlet Protection -- 7.3 Gates -- 7.3.1 Free Discharge -- 7.3.2 Submerged Discharge -- 7.3.3 Empirical Equations -- 7.4 Weirs -- 7.4.1 Sharp-Crested Weirs -- 7.4.1.1 Rectangular weirs -- 7.4.1.2 V-notchweirs -- 7.4.1.3 Compound weirs -- 7.4.1.4 Other types of sharp-crested weirs -- 7.4.2 Broad-Crested Weirs -- 7.4.2.1 Rectangular weirs -- 7.4.2.2 Compound weirs -- 7.4.2.3 Gabionweirs -- 7.5 Spillways -- 7.5.1 Uncontrolled Spillways -- 7.5.2 Controlled (Gated) Spillways -- 7.5.2.1 Gates seated on the spillway crest -- 7.5.2.2 Gates seated downstream of the spillway crest -- 7.6 Stilling Basins -- 7.6.1 Type Selection -- 7.6.2 Design Procedure -- 7.7 Dams and Reservoirs -- 7.7.1 Types of Dams -- 7.7.2 Reservoir Storage -- 7.7.2.1 Sediment accumulation -- 7.7.2.2 Determination of storage requirements -- 7.7.3 Hydropower -- 7.7.3.1 Turbines -- 7.7.3.2 Turbine performance -- 7.7.3.3 Feasibility of hydropower -- Problems -- 8 Probability and Statistics in Water-Resources Engineering -- 8.1 Introduction -- 8.2 Probability Distributions -- 8.2.1 Discrete Probability Distributions. 8.2.2 Continuous Probability Distributions -- 8.2.3 Mathematical Expectation and Moments -- 8.2.4 Return Period -- 8.2.5 Common Probability Functions -- 8.2.5.1 Binomial distribution -- 8.2.5.2 Geometric distribution -- 8.2.5.3 Poisson distribution -- 8.2.5.4 Exponential distribution -- 8.2.5.5 Gamma/Pearson Type III distribution -- 8.2.5.6 Normal distribution -- 8.2.5.7 Log-normal distribution -- 8.2.5.8 Uniform distribution -- 8.2.5.9 Extreme-value distributions -- 8.2.5.10 Chi-square distribution -- 8.3 Analysis of Hydrologic Data -- 8.3.1 Estimation of Population Distribution -- 8.3.1.1 Probability distribution of observed data -- 8.3.1.2 Hypothesis tests -- 8.3.1.3 Model selection criteria -- 8.3.2 Estimation of Population Parameters -- 8.3.2.1 Method of moments -- 8.3.2.2 Maximum-likelihood method -- 8.3.2.3 Method of L-moments -- 8.3.3 Frequency Analysis -- 8.3.3.1 Normal distribution -- 8.3.3.2 Log-normal distribution -- 8.3.3.3 Gamma/Pearson Type III distribution -- 8.3.3.4 Log-Pearson Type III distribution -- 8.3.3.5 Extreme-value Type I distribution -- 8.3.3.6 General extreme-value (GEV) distribution -- 8.4 Uncertainty Analysis -- Problems -- 9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions -- 9.1 Introduction -- 9.2 Rainfall -- 9.2.1 Measurement of Rainfall -- 9.2.2 Statistics of Rainfall Data -- 9.2.2.1 Rainfall statistics in the United States -- 9.2.2.2 Secondary estimation of IDF curves -- 9.2.3 Spatial Averaging and Interpolation of Rainfall -- 9.2.4 Design Rainfall -- 9.2.4.1 Return period -- 9.2.4.2 Rainfall duration -- 9.2.4.3 Rainfall depth -- 9.2.4.4 Temporal distribution -- 9.2.4.5 Spatial distribution -- 9.2.5 Extreme Rainfall -- 9.2.5.1 Rational estimation method -- 9.2.5.2 Statistical estimation method -- 9.2.5.3 World-record precipitation amounts -- 9.2.5.4 Probable maximum storm. 9.3 Rainfall Abstractions -- 9.3.1 Interception -- 9.3.2 Depression Storage -- 9.3.3 Infiltration -- 9.3.3.1 The infiltration process -- 9.3.3.2 Horton model -- 9.3.3.3 Green-Ampt model -- 9.3.3.4 NRCS curve-number model -- 9.3.3.5 Comparison of infiltration models -- 9.3.4 Rainfall Excess on Composite Areas -- 9.4 Baseflow -- Problems -- 10 Fundamentals of Surface-Water Hydrology II: Runoff -- 10.1 Introduction -- 10.2 Mechanisms of Surface Runoff -- 10.3 Time of Concentration -- 10.3.1 Overland Flow -- 10.3.1.1 Kinematic-wave equation -- 10.3.1.2 NRCS method -- 10.3.1.3 Kirpich equation -- 10.3.1.4 Izzard equation -- 10.3.1.5 Kerby equation -- 10.3.2 Channel Flow -- 10.3.3 Accuracy of Estimates -- 10.4 Peak-Runoff Models -- 10.4.1 The Rational Method -- 10.4.2 NRCS-TR55 Method -- 10.5 Continuous-Runoff Models -- 10.5.1 Unit-Hydrograph Theory -- 10.5.2 Instantaneous Unit Hydrograph -- 10.5.3 Unit-Hydrograph Models -- 10.5.3.1 Snyder unit-hydrograph model -- 10.5.3.2 NRCS dimensionless unit hydrograph -- 10.5.3.3 Accuracy of unit-hydrograph models -- 10.5.4 Time-Area Models -- 10.5.5 Kinematic-Wave Model -- 10.5.6 Nonlinear-Reservoir Model -- 10.5.7 Santa Barbara Urban Hydrograph Model -- 10.5.8 Extreme Runoff Events -- 10.6 Routing Models -- 10.6.1 Hydrologic Routing -- 10.6.1.1 Modified Puls method -- 10.6.1.2 Muskingum method -- 10.6.2 Hydraulic Routing -- 10.7 Water-Quality Models -- 10.7.1 Event-Mean Concentrations -- 10.7.2 Regression Equations -- 10.7.2.1 USGS model -- 10.7.2.2 EPA model -- Problems -- 11 Design of Stormwater-Collection Systems -- 11.1 Introduction -- 11.2 Street Gutters -- 11.3 Inlets -- 11.3.1 CurbInlets -- 11.3.2 Grate Inlets -- 11.3.3 Combination Inlets -- 11.3.4 Slotted Inlets -- 11.4 Roadside and Median Channels -- 11.5 Storm Sewers -- 11.5.1 Calculation of Design Flow Rates -- 11.5.2 Pipe Sizing and Selection. 11.5.3 Manholes. |
| Record Nr. | UNINA-9910150213203321 |
Chin David A.
|
||
| Boston : , : Pearson, , [2013] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||