Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others) |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 |
Descrizione fisica | 1 online resource (338 p.) |
Disciplina |
629.8/932
629.892 |
Collana | Control systems, robotics and manufacturing series. |
Soggetto topico | Robots - Motion |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-62297-9
1-282-16537-2 9786612165375 0-470-61162-6 0-470-39426-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Bipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model 2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots 3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. Bibliography Chapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem 4.5.5. A parametric optimization example |
Record Nr. | UNINA-9910139511903321 |
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bipedal robots : modeling, design and walking synthesis / / edited by Christine Chevallereau (and three others) |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 |
Descrizione fisica | 1 online resource (338 p.) |
Disciplina |
629.8/932
629.892 |
Collana | Control systems, robotics and manufacturing series. |
Soggetto topico | Robots - Motion |
ISBN |
1-118-62297-9
1-282-16537-2 9786612165375 0-470-61162-6 0-470-39426-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Bipedal Robots: Modeling, Design and Walking Synthesis; Table of Contents; Chapter 1. Bipedal Robots and Walking; 1.1. Introduction; 1.2. Biomechanical approach; 1.2.1. Biomechanical system: a source of inspiration; 1.2.2. Skeletal structure and musculature; 1.3. Human walking; 1.3.1. Architecture; 1.3.2. Walking and running trajectory data; 1.3.3. Study cases; 1.4. Bipedal walking robots: state of the art; 1.4.1. A brief history; 1.4.2. Japanese studies and creations; 1.4.3. The situation in France; 1.4.4. General evolution tendencies; 1.5. Different applications; 1.5.1. Service robotics
1.5.2. Robotics and dangerous terrains1.5.3. Toy robots and computer animation in cinema; 1.5.4. Defense robotics; 1.5.5. Medical prostheses; 1.5.6. Surveillance robots; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Kinematic and Dynamic Models for Walking; 2.1. Introduction; 2.2. The kinematics of walking; 2.2.1. DoF of the locomotion system; 2.2.2. Walking patterns; 2.2.3. Generalized coordinates for a sagittal step; 2.2.4. Generalized coordinates for three-dimensional walking; 2.2.5. Transition conditions; 2.3. The dynamics of walking; 2.3.1. Lagrangian dynamic model 2.3.2. Newton-Euler's dynamic model2.3.3. Impact model; 2.4. Dynamic constraints; 2.4.1. CoP and equilibrium constraints; 2.4.2. Non-sliding constraints; 2.5. Complementary feasibility constraints; 2.5.1. Respecting the technological limitations; 2.5.2. Non-collision constraints; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. Design Tools for Making Bipedal Robots; 3.1. Introduction; 3.2. Study of influence of robot body masses; 3.2.1. Case 1: the three-link robot; 3.2.2. Case 2: the five-link robot; 3.3. Mechanical design: the architectures carried out; 3.3.1. The structure of planar robots 3.3.2. 3D robot structures3.3.3. Technology of inter-body joints; 3.3.4. Drive technology; 3.4. Actuators; 3.4.1. Actuator types; 3.4.2. Characteristics of electric actuators; 3.4.3. Elements of choice for robotic actuators; 3.4.4. Comparing actuator performances; 3.4.5. Performances of transmission-actuator associations; 3.5. Sensors; 3.5.1. Measuring; 3.5.2. Frequently used sensors; 3.5.3. Characteristics and integration; 3.5.4. Sensors of inertial localization; 3.6. Conclusion; 3.7. Appendix; 3.7.1. Geometric model; 3.7.2. Dynamic model; 3.8. Bibliography Chapter 4. Walking Pattern Generators4.1. Introduction; 4.2. Passive and quasi-passive dynamic walking; 4.2.1. Passive walking; 4.2.2. Quasi-passive dynamic walking; 4.3. Static balance walking; 4.4. Dynamic synthesis of walking; 4.4.1. Performance criteria for walking synthesis; 4.4.2. Formalizing the problem of dynamic optimization; 4.5. Walking synthesis via parametric optimization; 4.5.1. Approximating the control variables; 4.5.2. Parameterizing the configuration variables; 4.5.3. Parameterizing the Lagrange multipliers; 4.5.4. Formulation of the parametric optimization problem 4.5.5. A parametric optimization example |
Record Nr. | UNINA-9910830011803321 |
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Trends in Medical and Service Robots : Human Centered Analysis, Control and Design / / edited by Philippe Wenger, Christine Chevallereau, Doina Pisla, Hannes Bleuler, Aleksandar Rodić |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (308 p.) |
Disciplina | 174.9629892 |
Collana | Mechanisms and Machine Science |
Soggetto topico |
Robotics
Automation Biomedical engineering User interfaces (Computer systems) Minimally invasive surgery Robotics and Automation Biomedical Engineering and Bioengineering User Interfaces and Human Computer Interaction Minimally Invasive Surgery |
ISBN | 3-319-30674-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Effect of Non-Passive Operator on Enhanced Wave-Based Teleoperator for Robotic-Assisted, by J. Guo, C. Liu, P. Poignet -- Singularity Analysis of a Novel Minimally-Invasive-Surgery Hybrid Robot using Geometric Algebra, by T. Tanev -- ISO 13482:2014 and Its Confusing Categories. Building a Bridge between Law and Robotics, by E. Fosch Villaronga -- Variable stiffness for leaf springs mechanism, by L. Esteveny , L. Barbe, B. Bayle -- Application of Nonlinear Dynamics to Human Knee Movement on Plane Inclined Treadmill, by D. Tarnita, D.N. Tarnita -- Training of robot to assigned geometric and force trajectories, by A. Leskov, V. Golovin, M. Arkhipov, L. Kocherevskaya -- Kinematic Analysis of an Innovative Medical Parallel Robot using Study parameters, by C. Vaida, D. Pisla, J. Schadlbauer, M. Husty and N. Plitea -- Visuo-Vestibular Contributions to Vertical Selfmotion Perception in Healthy Adults, by I. Giannopulu P. Leboucher, G. Ratureau, I. Israël, and R. Jouvent -- Series elastic actuation for assistive orthotic devices, by A. Ortlieb, J. Oliver, M. Bouri, H. Bleuler -- Sensory-motor Anticipation and Local Information Fusion for Reliable Humanoid Approach, by H. F. Chame and C. Chevallereau -- On the Design of the Exoskeleton Arm with Decoupled Dynamics, by V. Arakelyan, Y. Aoustin, C. Chevallereau -- Tactile and visual feedback for control of forces in laparoscopy, by T. Howard, J. Szewczyk -- A Dual-user Teleoperation System with Adaptive Authority Adjustment for Haptic Training, by F. Liu, A. Lelevé, D. Eberard and T. Redarce -- Strategy to lock the knee of exoskeleton stance leg: study in the framework of ballistic walking model, by A. Formalsky and Y. Aoustin -- Framework design for a Robotic Driven Handheld Laparoscopic Instrument for Non-Invasive Intraoperative Detection of Small Endoluminal Digestive Tumors, by B. Mocan, V.V. Bintintan, S. Brad, C. Ciuce, M. Mocan, M. Murar -- Modeling and dynamic identification of medical devices: theory, issues and example, by A. Jubien and M. Gautier -- A legged robotic system for remote monitoring, by F. Tedeschi, G. Carbone -- Development of home human-centered social robot for aged people care, by A. Rodić, M. Jovanović, M. Vujović, I. Stevanović -- Morphological optimization of prosthesis’ finger for precision grasping of little objects, by J. L. Ramirez, A. Rubiano, N. Jouandeau, L. Gallimard, O. Polit -- Correction method for spine flexion tracking with markers, by S. Butnariu, C. Antonya -- Anthropomorphic underactuated hand with 15 joints, by E. Matheson, Y. Aoustin, E. Le Carpentier, A. Leon and J. Perrin -- Effects of the rolling mechanism of the rolling mechanism of the stance foot on generalized inverted pendulum definition, by S. Devie and S. Sakka. . |
Record Nr. | UNINA-9910253973603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|