Mechanical Characterization of Materials and Wave Dispersion [[electronic resource]] |
Autore | Chevalier Yvon |
Pubbl/distr/stampa | Hoboken, : Wiley, 2013 |
Descrizione fisica | 1 online resource (671 p.) |
Disciplina |
620.1/1292
620.11 620.11292 |
Altri autori (Persone) | TuongJean Vinh |
Collana | ISTE |
Soggetto topico |
Dispersion -- Experiments
Engineering instruments Materials -- Mechanical properties -- Experiments Structural engineering -- Materials -- Experiments Wave motion, Theory of -- Experiments Viscoelastic materials - Mechanical properties - Mathematical models Flexible structures - Vibration - Mathematical models Structural engineering - Mathematical models - Materials Wave-motion, Theory of - Mathematics Dispersion - Mathematical models Wave equation Chemical & Materials Engineering Engineering & Applied Sciences Materials Science |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-62311-8
1-299-31519-4 0-470-39427-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Mechanics of Viscoelastic Materials and Wave Dispersion; Title Page; Copyright Page; Table of Contents; Preface; Acknowledgements; PART A. CONSTITUTIVE EQUATIONS OF MATERIALS; Chapter 1. Elements of Anisotropic Elasticity and Complements on Previsional Calculations; 1.1. Constitutive equations in a linear elastic regime; 1.1.1. Symmetry applied to tensors sijkl and cijkl; 1.1.2. Constitutive equations under matrix form; 1.2. Technical elastic moduli; 1.2.1. Tension tests with one normal stress component σ; 1.2.2. Shear test; 1.3. Real materials with special symmetries
1.3.1. Change of reference axes1.3.2. Orthotropic materials possess two orthogonal planes of symmetry; 1.3.3. Quasi-isotropic transverse (tetragonal) material; 1.3.4. Transverse isotropic materials (hexagonal system); 1.3.5. Quasi-isotropic material (cubic system); 1.3.6. Isotropic materials; 1.4. Relationship between compliance Sij and stiffness Cij for orthotropic materials; 1.5. Useful inequalities between elastic moduli; 1.5.1. Orthotropic materials; 1.5.2. Quasi-transverse isotropic materials; 1.5.3. Transverse isotropic, quasi-isotropic, and isotropic materials 1.6. Transformation of reference axes is necessary in many circumstances1.6.1. Practical examples; 1.6.2. Components of stiffness and compliance after transformation; 1.6.3. Remarks on shear elastic moduli Gii (ij = 23, 31, 12) and stiffness constants Cii (with i = 4, 5, 6); 1.6.4. The practical consequence of a transformation of reference axes; 1.7. Invariants and their applications in the evaluation of elastic constants; 1.7.1. Elastic constants versus invariants; 1.7.2. Practical utilization of invariants in the evaluation of elastic constants; 1.8. Plane elasticity 1.8.1. Expression of plane stress stiffness versus compliance matrix1.8.2. Plane stress stiffness components versus three-dimensional stiffness components; 1.9. Elastic previsional calculations for anisotropic composite materials; 1.9.1. Long fibers regularly distributed in the matrix; 1.9.2. Stratified composite materials; 1.9.3. Reinforced fabric composite materials; 1.10. Bibliography; 1.11. Appendix; Appendix 1.A. Overview on methods used in previsional calculation of fiber-reinforced composite materials; Chapter 2. Elements of Linear Viscoelasticity 2.1. Time delay between sinusoidal stress and strain2.2. Creep and relaxation tests; 2.2.1. Creep test; 2.2.2. Relaxation test; 2.2.3. Ageing and non-ageing viscoelastic materials; 2.2.4. Viscoelastic materials with fading memory; 2.3. Mathematical formulation of linear viscoelasticity; 2.3.1. Linear system; 2.3.2. Superposition (or Boltzmann's) principle; 2.3.3. Creep function in a functional constitutive equation; 2.3.4. Relaxation function in functional constitutive equations; 2.3.5. Properties of relaxation and creep functions 2.4. Generalization of creep and relaxation functions to tridimensional constitutive equations |
Record Nr. | UNINA-9910139050703321 |
Chevalier Yvon | ||
Hoboken, : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical Characterization of Materials and Wave Dispersion [[electronic resource]] |
Autore | Chevalier Yvon |
Pubbl/distr/stampa | Hoboken, : Wiley, 2013 |
Descrizione fisica | 1 online resource (671 p.) |
Disciplina |
620.1/1292
620.11 620.11292 |
Altri autori (Persone) | TuongJean Vinh |
Collana | ISTE |
Soggetto topico |
Dispersion -- Experiments
Engineering instruments Materials -- Mechanical properties -- Experiments Structural engineering -- Materials -- Experiments Wave motion, Theory of -- Experiments Viscoelastic materials - Mechanical properties - Mathematical models Flexible structures - Vibration - Mathematical models Structural engineering - Mathematical models - Materials Wave-motion, Theory of - Mathematics Dispersion - Mathematical models Wave equation Chemical & Materials Engineering Engineering & Applied Sciences Materials Science |
ISBN |
1-118-62311-8
1-299-31519-4 0-470-39427-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Mechanics of Viscoelastic Materials and Wave Dispersion; Title Page; Copyright Page; Table of Contents; Preface; Acknowledgements; PART A. CONSTITUTIVE EQUATIONS OF MATERIALS; Chapter 1. Elements of Anisotropic Elasticity and Complements on Previsional Calculations; 1.1. Constitutive equations in a linear elastic regime; 1.1.1. Symmetry applied to tensors sijkl and cijkl; 1.1.2. Constitutive equations under matrix form; 1.2. Technical elastic moduli; 1.2.1. Tension tests with one normal stress component σ; 1.2.2. Shear test; 1.3. Real materials with special symmetries
1.3.1. Change of reference axes1.3.2. Orthotropic materials possess two orthogonal planes of symmetry; 1.3.3. Quasi-isotropic transverse (tetragonal) material; 1.3.4. Transverse isotropic materials (hexagonal system); 1.3.5. Quasi-isotropic material (cubic system); 1.3.6. Isotropic materials; 1.4. Relationship between compliance Sij and stiffness Cij for orthotropic materials; 1.5. Useful inequalities between elastic moduli; 1.5.1. Orthotropic materials; 1.5.2. Quasi-transverse isotropic materials; 1.5.3. Transverse isotropic, quasi-isotropic, and isotropic materials 1.6. Transformation of reference axes is necessary in many circumstances1.6.1. Practical examples; 1.6.2. Components of stiffness and compliance after transformation; 1.6.3. Remarks on shear elastic moduli Gii (ij = 23, 31, 12) and stiffness constants Cii (with i = 4, 5, 6); 1.6.4. The practical consequence of a transformation of reference axes; 1.7. Invariants and their applications in the evaluation of elastic constants; 1.7.1. Elastic constants versus invariants; 1.7.2. Practical utilization of invariants in the evaluation of elastic constants; 1.8. Plane elasticity 1.8.1. Expression of plane stress stiffness versus compliance matrix1.8.2. Plane stress stiffness components versus three-dimensional stiffness components; 1.9. Elastic previsional calculations for anisotropic composite materials; 1.9.1. Long fibers regularly distributed in the matrix; 1.9.2. Stratified composite materials; 1.9.3. Reinforced fabric composite materials; 1.10. Bibliography; 1.11. Appendix; Appendix 1.A. Overview on methods used in previsional calculation of fiber-reinforced composite materials; Chapter 2. Elements of Linear Viscoelasticity 2.1. Time delay between sinusoidal stress and strain2.2. Creep and relaxation tests; 2.2.1. Creep test; 2.2.2. Relaxation test; 2.2.3. Ageing and non-ageing viscoelastic materials; 2.2.4. Viscoelastic materials with fading memory; 2.3. Mathematical formulation of linear viscoelasticity; 2.3.1. Linear system; 2.3.2. Superposition (or Boltzmann's) principle; 2.3.3. Creep function in a functional constitutive equation; 2.3.4. Relaxation function in functional constitutive equations; 2.3.5. Properties of relaxation and creep functions 2.4. Generalization of creep and relaxation functions to tridimensional constitutive equations |
Record Nr. | UNINA-9910830891103321 |
Chevalier Yvon | ||
Hoboken, : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|