Distributed fiber sensing and dynamic ratings of power cable / / S. Cherukupalli, George J. Anders |
Autore | Cherukupalli S. |
Pubbl/distr/stampa | Hoboken : , : Wiley-IEEE Press, , [2020] |
Descrizione fisica | 1 online resource (243 pages) |
Disciplina | 621.3692 |
Collana | IEEE Press series on power engineering |
Soggetto topico | Fiber optic cables |
ISBN |
1-119-48773-0
1-119-48771-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface xiii -- Acknowledgments xvi -- 1 Application of Fiber Optic Sensing 1 -- 1.1 Types of Available FO Sensors 2 -- 1.2 Fiber Optic Applications for Monitoring of Concrete Structures 4 -- 1.3 Application of FO Sensing Systems in Mines 7 -- 1.4 Composite Aircraft Wing Monitoring 8 -- 1.5 Application in the Field of Medicine 9 -- 1.6 Application in the Power Industry 9 -- 1.6.1 Brief Literature Review 10 -- 1.6.2 Monitoring of Strain in the Overhead Conductor of Transmission Lines 15 -- 1.6.3 Temperature Monitoring of Transformers 16 -- 1.6.4 Optical Current Measurements 17 -- 1.7 Application for Oil, Gas, and Transportation Sectors 17 -- 2 Distributed Fiber Optic Sensing 20 -- 2.1 Introduction 20 -- 2.2 Advantages of the Fiber Optic Technology 20 -- 2.3 Disadvantages of the Distributed Sensing Technology 22 -- 2.4 Power Cable Applications 23 -- 3 Distributed Fiber Optic Temperature Sensing 26 -- 3.1 Fundamental Physics of DTS Measurements 26 -- 3.1.1 Rayleigh Scattering 26 -- 3.1.2 Raman Spectroscopy 27 -- 3.1.3 Brillouin Scattering 27 -- 3.1.4 Time and Frequency Domain Reflectometry 30 -- 4 Optical Fibers, Connectors, and Cables 32 -- 4.1 Optical Fibers 32 -- 4.1.1 Construction of the Fiber Optic Cable and Light Propagation Principles 33 -- 4.1.2 Protection and Placement of Optical Fibers in Power Cable Installations 38 -- 4.1.3 Comparison of Multiple and Single-Mode Fibers 44 -- 4.2 Optical Splicing 45 -- 4.3 Fiber Characterization 47 -- 4.4 Standards for Fiber Testing 55 -- 4.4.1 Fiber Optic Testing 56 -- 4.4.2 Fiber Optic Systems and Subsystems 56 -- 4.5 Optical Connectors 68 -- 4.6 Utility Practice for Testing of Optical Fibers 74 -- 4.7 Aging and Maintenance 75 -- 5 Types of Power Cables and Cable with Integrated Fibers 77 -- 5.1 Methods of Incorporating DTS Sensing Optical Fibers (Cables) into Power Transmission Cable Corridors 77 -- 5.1.1 Integration of Optical Cable into Land Power Cables 77 -- 5.1.2 Integration of Optical Cable into Submarine Power Cables 78.
5.1.3 Other Types of Constructions 78 -- 5.1.4 Example of Construction of the Stainless Steel Sheathed Fiber Optic Cable 81 -- 5.1.5 Example of a Retrofit Placement of an Optical Cable into 525 kV Submarine SCFF Power Cable Conductor 82 -- 5.1.5.1 Objectives of the Project 82 -- 5.1.5.2 Installation 84 -- 5.2 Advantages and Disadvantages of Different Placement of Optical Fibers in the Cable 87 -- 5.2.1 An Example with Placement of FO Sensors at Different Locations Within the Cable Installation 89 -- 5.3 What are Some of the Manufacturing Challenges? 92 -- 6 DTS Systems 94 -- 6.1 What Constitutes a DTS System? 94 -- 6.2 Interpretation and Application of the Results Displayed by a DTS System 95 -- 6.2.1 General 95 -- 6.2.2 Comparison of Measured and Calculated Temperatures 97 -- 6.3 DTS System Calibrators 100 -- 6.4 Computers 100 -- 6.5 DTS System General Requirements 101 -- 6.5.1 General Requirements 101 -- 6.5.2 Summary of Performance and Operating Requirements 102 -- 6.5.3 Electromagnetic Compatibility Performance Requirements for the Control PC and the DTS Unit 103 -- 6.5.4 Software Requirements for the DTS Control 104 -- 6.5.5 DTS System Documentation 105 -- 7 DTS System Calibrators 106 -- 7.1 Why is Calibration Needed? 106 -- 7.2 How Should One Undertake the Calibration? 107 -- 7.3 Accuracy and Annual Maintenance and Its Impact on the Measurement Accuracy 109 -- 8 DTS System Factory and Site Acceptance Tests 112 -- 8.1 Factory Acceptance Tests 113 -- 8.1.1 Factory QA Tests on the Fiber Optic Cable 113 -- 8.1.2 FIMT Cable Tests 114 -- 8.1.3 Temperature Accuracy Test 115 -- 8.1.4 Temperature Resolution Test 116 -- 8.1.5 Temperature Reading Stability Test 116 -- 8.1.6 Long-Term Temperature Stability Test 116 -- 8.1.7 Transient Response Test 117 -- 8.1.8 Initial Functional Test and Final Inspection 117 -- 8.2 DTS Site Acceptance Tests (SAT) 119 -- 8.2.1 Final Visual Inspection and Verification of Software Functionality 120 -- 8.2.2 Functionality Test on the DTS Unit 120. 8.2.3 Verification of the Optical Switch 120 -- 8.2.4 System Control Tests 120 -- 8.2.5 System Integration Test with Control Center (if Applicable) 121 -- 8.3 Typical Example of DTS Site Acceptance Tests 121 -- 8.4 Site QA Tests on the Optical Cable System 125 -- 8.5 Site Acceptance Testing of Brillouin-Based DTS Systems 126 -- 8.6 Testing Standards That Pertain to FO Cables 127 -- 9 How Can Temperature Data Be Used to Forecast Circuit Ratings? 129 -- 9.1 Introduction 129 -- 9.2 Ampacity Limits 129 -- 9.2.1 Steady-State Summer and Winter Ratings 130 -- 9.2.2 Overload Ratings 130 -- 9.2.3 Dynamic Ratings 130 -- 9.3 Calculation of Cable Ratings - A Review 131 -- 9.3.1 Steady-State Conditions 132 -- 9.3.2 Transient Conditions 133 -- 9.3.2.1 Response to a Step Function 134 -- 9.4 Application of a DTS for Rating Calculations 138 -- 9.4.1 Introduction 138 -- 9.4.2 A Review of the Existing Approaches 139 -- 9.4.3 Updating the Unknown Parameters 144 -- 9.5 Prediction of Cable Ratings 146 -- 9.5.1 Load Forecasting Methodology 146 -- 9.6 Software Applications and Tools 148 -- 9.6.1 CYME Real-Time Thermal Rating System 150 -- 9.6.1.1 Verification of the Model 151 -- 9.6.2 EPRI Dynamic Thermal Circuit Rating 154 -- 9.6.3 DRS Software by JPS (Sumitomo Corp) in Japan 156 -- 9.6.4 RTTR Software by LIOS 158 -- 9.7 Implementing an RTTR System 161 -- 9.7.1 Communications with EMS 162 -- 9.7.2 Communications with the Grid Operator 163 -- 9.7.3 IT-Security, Data Flow, Authentication, and Vulnerability Management 163 -- 9.7.4 Remote Access to the RTTR Equipment 164 -- 9.8 Conclusions 164 -- 10 Examples of Application of a DTS System in a Utility Environment 166 -- 10.1 Sensing Cable Placement in Cable Corridors 166 -- 10.2 Installation of the Fiber Optic Cable 167 -- 10.3 Retrofits and a 230 kV SCFF Transmission Application 172 -- 10.3.1 Early 230 kV Cable Temperature Profiling Results 172 -- 10.3.2 Location, Mitigation, and Continued Monitoring of the 230 kV Hot Spots 175 -- 10.4 Example of a DTS Application on 69 kV Cable System 177. 10.5 Verification Steps 178 -- 10.5.1 Analytical Methods 179 -- 10.5.2 Dynamic Thermal Circuit Ratings 180 -- 10.6 Challenges and Experience with Installing Optical Fibers on Existing and New Transmission Cables in a Utility Environment 181 -- 11 Use of Distributed Sensing for Strain Measurement and Acousitc Monitoring in Power Cables 185 -- 11.1 Introduction 185 -- 11.2 Strain Measurement 185 -- 11.3 Example of Strain Measurement of a Submarine Power Cable 186 -- 11.3.1 Introduction 186 -- 11.3.2 The Importance of Tight Buffer Cable 187 -- 11.3.3 Description of the Brillouin Optical Time Domain Reflectometer (BOTDR) System for Strain Measurement 188 -- 11.3.4 Experimental Setup 188 -- 11.3.5 Measurement Results 191 -- 11.3.6 Discussion 195 -- 11.4 Calculation of the Cable Stress from the Strain Values 197 -- 11.5 Conclusions from the DSM Tests 198 -- 11.6 Distributed Acoustic Sensing 199 -- 11.7 Potential DAS Applications in the Power Cable Industry 202 -- 11.8 An Example of a DAS Application in the USA 203 -- 11.9 An Example of a DAS Application in Scotland 207 -- 11.10 Conclusions 208 -- Bibliography 210 -- Index 216. |
Record Nr. | UNINA-9910554870603321 |
Cherukupalli S. | ||
Hoboken : , : Wiley-IEEE Press, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Distributed fiber sensing and dynamic ratings of power cable / / S. Cherukupalli, George J. Anders |
Autore | Cherukupalli S. |
Pubbl/distr/stampa | Hoboken : , : Wiley-IEEE Press, , [2020] |
Descrizione fisica | 1 online resource (243 pages) |
Disciplina | 621.3692 |
Collana | IEEE Press series on power engineering |
Soggetto topico | Fiber optic cables |
ISBN |
1-119-48773-0
1-119-48771-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface xiii -- Acknowledgments xvi -- 1 Application of Fiber Optic Sensing 1 -- 1.1 Types of Available FO Sensors 2 -- 1.2 Fiber Optic Applications for Monitoring of Concrete Structures 4 -- 1.3 Application of FO Sensing Systems in Mines 7 -- 1.4 Composite Aircraft Wing Monitoring 8 -- 1.5 Application in the Field of Medicine 9 -- 1.6 Application in the Power Industry 9 -- 1.6.1 Brief Literature Review 10 -- 1.6.2 Monitoring of Strain in the Overhead Conductor of Transmission Lines 15 -- 1.6.3 Temperature Monitoring of Transformers 16 -- 1.6.4 Optical Current Measurements 17 -- 1.7 Application for Oil, Gas, and Transportation Sectors 17 -- 2 Distributed Fiber Optic Sensing 20 -- 2.1 Introduction 20 -- 2.2 Advantages of the Fiber Optic Technology 20 -- 2.3 Disadvantages of the Distributed Sensing Technology 22 -- 2.4 Power Cable Applications 23 -- 3 Distributed Fiber Optic Temperature Sensing 26 -- 3.1 Fundamental Physics of DTS Measurements 26 -- 3.1.1 Rayleigh Scattering 26 -- 3.1.2 Raman Spectroscopy 27 -- 3.1.3 Brillouin Scattering 27 -- 3.1.4 Time and Frequency Domain Reflectometry 30 -- 4 Optical Fibers, Connectors, and Cables 32 -- 4.1 Optical Fibers 32 -- 4.1.1 Construction of the Fiber Optic Cable and Light Propagation Principles 33 -- 4.1.2 Protection and Placement of Optical Fibers in Power Cable Installations 38 -- 4.1.3 Comparison of Multiple and Single-Mode Fibers 44 -- 4.2 Optical Splicing 45 -- 4.3 Fiber Characterization 47 -- 4.4 Standards for Fiber Testing 55 -- 4.4.1 Fiber Optic Testing 56 -- 4.4.2 Fiber Optic Systems and Subsystems 56 -- 4.5 Optical Connectors 68 -- 4.6 Utility Practice for Testing of Optical Fibers 74 -- 4.7 Aging and Maintenance 75 -- 5 Types of Power Cables and Cable with Integrated Fibers 77 -- 5.1 Methods of Incorporating DTS Sensing Optical Fibers (Cables) into Power Transmission Cable Corridors 77 -- 5.1.1 Integration of Optical Cable into Land Power Cables 77 -- 5.1.2 Integration of Optical Cable into Submarine Power Cables 78.
5.1.3 Other Types of Constructions 78 -- 5.1.4 Example of Construction of the Stainless Steel Sheathed Fiber Optic Cable 81 -- 5.1.5 Example of a Retrofit Placement of an Optical Cable into 525 kV Submarine SCFF Power Cable Conductor 82 -- 5.1.5.1 Objectives of the Project 82 -- 5.1.5.2 Installation 84 -- 5.2 Advantages and Disadvantages of Different Placement of Optical Fibers in the Cable 87 -- 5.2.1 An Example with Placement of FO Sensors at Different Locations Within the Cable Installation 89 -- 5.3 What are Some of the Manufacturing Challenges? 92 -- 6 DTS Systems 94 -- 6.1 What Constitutes a DTS System? 94 -- 6.2 Interpretation and Application of the Results Displayed by a DTS System 95 -- 6.2.1 General 95 -- 6.2.2 Comparison of Measured and Calculated Temperatures 97 -- 6.3 DTS System Calibrators 100 -- 6.4 Computers 100 -- 6.5 DTS System General Requirements 101 -- 6.5.1 General Requirements 101 -- 6.5.2 Summary of Performance and Operating Requirements 102 -- 6.5.3 Electromagnetic Compatibility Performance Requirements for the Control PC and the DTS Unit 103 -- 6.5.4 Software Requirements for the DTS Control 104 -- 6.5.5 DTS System Documentation 105 -- 7 DTS System Calibrators 106 -- 7.1 Why is Calibration Needed? 106 -- 7.2 How Should One Undertake the Calibration? 107 -- 7.3 Accuracy and Annual Maintenance and Its Impact on the Measurement Accuracy 109 -- 8 DTS System Factory and Site Acceptance Tests 112 -- 8.1 Factory Acceptance Tests 113 -- 8.1.1 Factory QA Tests on the Fiber Optic Cable 113 -- 8.1.2 FIMT Cable Tests 114 -- 8.1.3 Temperature Accuracy Test 115 -- 8.1.4 Temperature Resolution Test 116 -- 8.1.5 Temperature Reading Stability Test 116 -- 8.1.6 Long-Term Temperature Stability Test 116 -- 8.1.7 Transient Response Test 117 -- 8.1.8 Initial Functional Test and Final Inspection 117 -- 8.2 DTS Site Acceptance Tests (SAT) 119 -- 8.2.1 Final Visual Inspection and Verification of Software Functionality 120 -- 8.2.2 Functionality Test on the DTS Unit 120. 8.2.3 Verification of the Optical Switch 120 -- 8.2.4 System Control Tests 120 -- 8.2.5 System Integration Test with Control Center (if Applicable) 121 -- 8.3 Typical Example of DTS Site Acceptance Tests 121 -- 8.4 Site QA Tests on the Optical Cable System 125 -- 8.5 Site Acceptance Testing of Brillouin-Based DTS Systems 126 -- 8.6 Testing Standards That Pertain to FO Cables 127 -- 9 How Can Temperature Data Be Used to Forecast Circuit Ratings? 129 -- 9.1 Introduction 129 -- 9.2 Ampacity Limits 129 -- 9.2.1 Steady-State Summer and Winter Ratings 130 -- 9.2.2 Overload Ratings 130 -- 9.2.3 Dynamic Ratings 130 -- 9.3 Calculation of Cable Ratings - A Review 131 -- 9.3.1 Steady-State Conditions 132 -- 9.3.2 Transient Conditions 133 -- 9.3.2.1 Response to a Step Function 134 -- 9.4 Application of a DTS for Rating Calculations 138 -- 9.4.1 Introduction 138 -- 9.4.2 A Review of the Existing Approaches 139 -- 9.4.3 Updating the Unknown Parameters 144 -- 9.5 Prediction of Cable Ratings 146 -- 9.5.1 Load Forecasting Methodology 146 -- 9.6 Software Applications and Tools 148 -- 9.6.1 CYME Real-Time Thermal Rating System 150 -- 9.6.1.1 Verification of the Model 151 -- 9.6.2 EPRI Dynamic Thermal Circuit Rating 154 -- 9.6.3 DRS Software by JPS (Sumitomo Corp) in Japan 156 -- 9.6.4 RTTR Software by LIOS 158 -- 9.7 Implementing an RTTR System 161 -- 9.7.1 Communications with EMS 162 -- 9.7.2 Communications with the Grid Operator 163 -- 9.7.3 IT-Security, Data Flow, Authentication, and Vulnerability Management 163 -- 9.7.4 Remote Access to the RTTR Equipment 164 -- 9.8 Conclusions 164 -- 10 Examples of Application of a DTS System in a Utility Environment 166 -- 10.1 Sensing Cable Placement in Cable Corridors 166 -- 10.2 Installation of the Fiber Optic Cable 167 -- 10.3 Retrofits and a 230 kV SCFF Transmission Application 172 -- 10.3.1 Early 230 kV Cable Temperature Profiling Results 172 -- 10.3.2 Location, Mitigation, and Continued Monitoring of the 230 kV Hot Spots 175 -- 10.4 Example of a DTS Application on 69 kV Cable System 177. 10.5 Verification Steps 178 -- 10.5.1 Analytical Methods 179 -- 10.5.2 Dynamic Thermal Circuit Ratings 180 -- 10.6 Challenges and Experience with Installing Optical Fibers on Existing and New Transmission Cables in a Utility Environment 181 -- 11 Use of Distributed Sensing for Strain Measurement and Acousitc Monitoring in Power Cables 185 -- 11.1 Introduction 185 -- 11.2 Strain Measurement 185 -- 11.3 Example of Strain Measurement of a Submarine Power Cable 186 -- 11.3.1 Introduction 186 -- 11.3.2 The Importance of Tight Buffer Cable 187 -- 11.3.3 Description of the Brillouin Optical Time Domain Reflectometer (BOTDR) System for Strain Measurement 188 -- 11.3.4 Experimental Setup 188 -- 11.3.5 Measurement Results 191 -- 11.3.6 Discussion 195 -- 11.4 Calculation of the Cable Stress from the Strain Values 197 -- 11.5 Conclusions from the DSM Tests 198 -- 11.6 Distributed Acoustic Sensing 199 -- 11.7 Potential DAS Applications in the Power Cable Industry 202 -- 11.8 An Example of a DAS Application in the USA 203 -- 11.9 An Example of a DAS Application in Scotland 207 -- 11.10 Conclusions 208 -- Bibliography 210 -- Index 216. |
Record Nr. | UNINA-9910830126203321 |
Cherukupalli S. | ||
Hoboken : , : Wiley-IEEE Press, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|