top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of Macrocyclic Supramolecular Assembly [[electronic resource] /] / edited by Yu Liu, Yong Chen, Heng-Yi Zhang
Handbook of Macrocyclic Supramolecular Assembly [[electronic resource] /] / edited by Yu Liu, Yong Chen, Heng-Yi Zhang
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Disciplina 547
Soggetto topico Organic chemistry
Medicinal chemistry
Physical chemistry
Biophysics
Biological physics
Atomic structure  
Molecular structure 
Organic Chemistry
Medicinal Chemistry
Physical Chemistry
Biological and Medical Physics, Biophysics
Atomic/Molecular Structure and Spectra
ISBN 981-13-1744-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910349515203321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Macrocyclic Supramolecular Assembly / / edited by Yu Liu, Yong Chen, Heng-Yi Zhang
Handbook of Macrocyclic Supramolecular Assembly / / edited by Yu Liu, Yong Chen, Heng-Yi Zhang
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (1098 illus., 848 illus. in color. eReference.)
Disciplina 547
Soggetto topico Chemistry, Organic
Medicinal chemistry
Physical chemistry
Biophysics
Atomic structure 
Molecular structure
Organic Chemistry
Medicinal Chemistry
Physical Chemistry
Atomic and Molecular Structure and Properties
ISBN 981-15-2686-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section 1. Supramolecular Assemblies Based on Crown Ethers and Cyclophanes -- Chapter 1. Water-Soluble Aromatic Crown Ethers: from Molecular Recognition to Molecular Assembly -- Chapter 2. Polypseudorotaxanes Constructed by Crown Ethers -- Chapter 3. Host-Guest Chemistry of A Macrocycle Containing p Systems Namely Cyclobis(paraquat-p-phenylene) -- Chapter 4. Mechanically Selflocked Molecules -- Chapter 5. Photo-luminescent Crown Ether Assembly. Section 2. Supramolecular Assemblies Based on Macrocyclic Arenes -- Chapter 1. Triptycene Derived Macrocyclic Arenes: from Calixarenes to Helicarenes -- Chapter 2. General Introduction of Some Emerging Macrocyclic Arenes Related to Calixarenes and Pillararenes -- Chapter 3. Macrocyclic Amphiphiles for Nanomedicine -- Chapter 4. Preparation of Biosensor Based on Supermolecular Recognizaiton -- Chapter 5. Application of Anion-Pi Interaction on Supramolecular Self-Assembly -- Chapter 6. Functional Rotaxanes: from Synthetic Methodology to Functional Molecular Materials -- Chapter 7. Biphen[n]arenes: Synthesis and Host-Guest Properties -- Chapter 8. Pillararene-based Supramolecular Polymer. Section 3. Supramolecular Assemblies Based on Cyclodextrins -- Chapter 1. Functionalized Cyclodextrins and Their Applications -- Chapter 2. Cyclodextrin Polyrotaxanes: Synthesis, Analytics and Functions -- Chapter 3. Cyclodextrin Hybrid Inorganic Nanocomposites for Molecular Recognition, Selective Adsorption and Drug Delivery -- Chapter 4. Photoresponsive Supramolecular Assembly with Biological Function -- Chapter 5. Cyclodextrin-based Supramolecular Hydrogel -- Chapter 6. Supramolecular Chiral Photochemistry -- Chapter 7. Construction and Functions of Supramolecular Cyclodextrin Polymer -- Chapter 8. Construction of Cyclodextrin-based Magnetic Supramolecular Assemblies and Its Regulation of Cell Mobility -- Chapter 9. Supramolecular Assemblys Based on Multi-Charge Cyclodextrin Induced Aggregation. Section 4. Supramolecular Assemblies Based on Cucurbiturils -- Chapter 1. Stimuli Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications -- Chapter 2. Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-type Hosts -- Chapter 3. Self-Assembled Two-Dimensional Organic Layers in Solution Phase -- Chapter 4. Modified Cucurbiturils with Various Ring Size: Synthesis -- Chapter 5. Modified Cucurbiturils with Various Ring Size: Assembly -- Chapter 6. Modified Cucurbiturils with Various Ring Size: Functions -- Chapter 7. Biological Systems Involving Cucurbituril -- Chapter 8. Cucurbituril-based Pseudorotaxanes and Rotaxanes -- Chapter 9. Construction of Supramolecular Networks Based on CB8. Section 5. Supramolecular Assemblies Based on Other Macrocycles -- Chapter 1. Supramolecular Catalysis Using Functional Organic Macrocycles and Molecular Cages -- Chapter 2. Porphyrins and Porphyrinoids: Syntheses, Structures, and Properties -- Chapter 3. Protein Self-Assembly: Strategies and Applications -- Chapter 4. Peptide Tectonics: towards Biomimetic and Bioinspired Soft Materials -- Chapter 5. Naphthol-based Macrocycles -- Chapter 6. Carbohydrate-based Macromolecular Self-Assembly -- Chapter 7. in vivo Self-Assembly of Polypeptide-based Nanomaterials -- Chapter 8. Construction of Well-Defined Discrete Metallacycles and Their Biological Applications. Section 6. Some Important Approaches in Macrocycle-based Supramolecular Chemistry -- Chapter 1. Molecular Simulations of Supramolecular Architectures -- Chapter 2. Thermodynamic Studies of Supramolecular Systems -- Chapter 3. Spectral Studies of Supramolecular Systems -- Chapter 4. Artificial Host Molecules Modifying Biomacromolecules -- Chapter 5 Controllable Synthesis of Polynuclear Metal Clusters within Macrocycles -- Chapter 6 Integrating Macrocyclic Rings into Functional 3D Printing Materials -- Chapter 7 Molecular Recognition with Helical Receptors -- Chapter 8 Supramolecular Interface for Biochemical Sensing Applications -- Chapter 9 Supramolecular Functional Complexes Constructed by Orthogonal Self-Assembly -- Chapter 10 Aggregation Induced Emission of Macrocycle-based Assemblies -- Chapter 11 Application of Rare Earth Metal Complexes in Macrocycle-based Assemblies -- Chapter 12 Two Dimensional Supramolecular Framwork Based on Host-Guest Self-Assembly. Section 7. Biological Applications -- Chapter 1. Theranostic Supramolecular Vesicle Systems -- Chapter 2. Host–Guest Sensing by Nanopores and Nanochannels -- Chapter 3. Highly Selective Ultrafast Proton Transport by Synthetic Unimolecular Proton Channels -- Chapter 4.Drug/Gene Delivery Platform Based on Supramolecular Interactions: Hyaluronic Aicd and Folic Acid as Targeting Units -- Chapter 5. Self-Assembling Peptides for Vaccine Development and Antibody Production -- Chapter 6. Supramolecules Assisted Transport of Ions and Molecules through Lipid Bilayers -- Chapter 7. Construction and Biomedical Applications of Macrocycle-based Supramolecular Topological Polymers -- Chapter 8. Supermolecules as Medicinal Drugs -- Chapter 9. Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery -- Chapter 10. Immunity Regulation by Cyclodextrin-based Supramolecular Assembly -- Chapter 11. Industrial Application of Cyclodextrin.
Record Nr. UNINA-9910416142003321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Autore Zhou Shiyu <1970->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 658.00727
Soggetto topico Random data (Statistics)
Industrial management - Mathematics
Industrial engineering - Statistical methods
Soggetto genere / forma Electronic books.
ISBN 1-5231-4353-3
1-119-66630-9
1-119-66627-9
1-119-66629-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class.
9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit.
12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index.
Record Nr. UNINA-9910555198203321
Zhou Shiyu <1970->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen
Autore Zhou Shiyu <1970->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 658.00727
Soggetto topico Random data (Statistics)
Industrial management - Mathematics
Industrial engineering - Statistical methods
ISBN 1-5231-4353-3
1-119-66630-9
1-119-66627-9
1-119-66629-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class.
9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit.
12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index.
Record Nr. UNINA-9910830968103321
Zhou Shiyu <1970->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche
Pubbl/distr/stampa Piscataway, N.J. : , : IEEE, , 2014
Descrizione fisica 1 online resource (350 pages) : illustrations
Disciplina 744
Soggetto topico Design
Machining - Technological innovations
Manufacturing processes - Technological innovations
ISBN 1-4799-6270-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Proceedings of the 2014 International Conference on Innovative Design and Manufacturing
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM)
Innovative Design and Manufacturing
Record Nr. UNISA-996280027503316
Piscataway, N.J. : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche
Pubbl/distr/stampa Piscataway, N.J. : , : IEEE, , 2014
Descrizione fisica 1 online resource (350 pages) : illustrations
Disciplina 744
Soggetto topico Design
Machining - Technological innovations
Manufacturing processes - Technological innovations
ISBN 1-4799-6270-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Proceedings of the 2014 International Conference on Innovative Design and Manufacturing
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM)
Innovative Design and Manufacturing
Record Nr. UNINA-9910141894003321
Piscataway, N.J. : , : IEEE, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reliability based airframe maintenance optimization and applications / / He Ren, Yong Chen, Xi Chen
Reliability based airframe maintenance optimization and applications / / He Ren, Yong Chen, Xi Chen
Autore Ren He
Edizione [1st edition]
Pubbl/distr/stampa London, England : , : Academic Press, , 2017
Descrizione fisica 1 online resource (237 pages)
Disciplina 629.1346
Soggetto topico Airplanes - Maintenance and repair
Airframes
ISBN 0-12-812669-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583370003321
Ren He  
London, England : , : Academic Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Technology Standard of Pipe Jacking / / by Lu Wang, Zhiguo Wu, Yong Chen, Zhaoquan Wang, Chunwen Yan, Taotao Tong
Technology Standard of Pipe Jacking / / by Lu Wang, Zhiguo Wu, Yong Chen, Zhaoquan Wang, Chunwen Yan, Taotao Tong
Autore Wang Lu
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (187 pages)
Disciplina 624
Altri autori (Persone) WuZhiguo
ChenYong
WangZhaoquan
YanChunwen
TongTaotao
Soggetto topico Civil engineering
Buildings - Design and construction
Engineering geology
Civil Engineering
Building Construction and Design
Geoengineering
ISBN 981-9955-97-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Scope -- Normative references -- Basic rules -- Construction organization design -- Pipe for pipe jacking -- Engineering environment and geological survey -- Working pit -- Pipe jacking equipment and instruments -- Jacking construction -- Special pipe jacking -- Pipe Jacking Construction Measures -- Treatment after jacking -- Construction monitoring -- Engineering quality and acceptance -- Health, safety and environmental protection management -- Production management -- Technical files.
Record Nr. UNINA-9910760274403321
Wang Lu  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tracking Control of Networked Systems Via Sliding-Mode
Tracking Control of Networked Systems Via Sliding-Mode
Autore Li Meng
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2021
Descrizione fisica 1 online resource (198 pages)
Altri autori (Persone) ChenYong
AliIkram
Soggetto genere / forma Electronic books.
ISBN 981-16-6514-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910508461703321
Li Meng  
Singapore : , : Springer Singapore Pte. Limited, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui