Handbook of Macrocyclic Supramolecular Assembly [[electronic resource] /] / edited by Yu Liu, Yong Chen, Heng-Yi Zhang |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Disciplina | 547 |
Soggetto topico |
Organic chemistry
Medicinal chemistry Physical chemistry Biophysics Biological physics Atomic structure Molecular structure Organic Chemistry Medicinal Chemistry Physical Chemistry Biological and Medical Physics, Biophysics Atomic/Molecular Structure and Spectra |
ISBN | 981-13-1744-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910349515203321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of Macrocyclic Supramolecular Assembly / / edited by Yu Liu, Yong Chen, Heng-Yi Zhang |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (1098 illus., 848 illus. in color. eReference.) |
Disciplina | 547 |
Soggetto topico |
Chemistry, Organic
Medicinal chemistry Physical chemistry Biophysics Atomic structure Molecular structure Organic Chemistry Medicinal Chemistry Physical Chemistry Atomic and Molecular Structure and Properties |
ISBN | 981-15-2686-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Section 1. Supramolecular Assemblies Based on Crown Ethers and Cyclophanes -- Chapter 1. Water-Soluble Aromatic Crown Ethers: from Molecular Recognition to Molecular Assembly -- Chapter 2. Polypseudorotaxanes Constructed by Crown Ethers -- Chapter 3. Host-Guest Chemistry of A Macrocycle Containing p Systems Namely Cyclobis(paraquat-p-phenylene) -- Chapter 4. Mechanically Selflocked Molecules -- Chapter 5. Photo-luminescent Crown Ether Assembly. Section 2. Supramolecular Assemblies Based on Macrocyclic Arenes -- Chapter 1. Triptycene Derived Macrocyclic Arenes: from Calixarenes to Helicarenes -- Chapter 2. General Introduction of Some Emerging Macrocyclic Arenes Related to Calixarenes and Pillararenes -- Chapter 3. Macrocyclic Amphiphiles for Nanomedicine -- Chapter 4. Preparation of Biosensor Based on Supermolecular Recognizaiton -- Chapter 5. Application of Anion-Pi Interaction on Supramolecular Self-Assembly -- Chapter 6. Functional Rotaxanes: from Synthetic Methodology to Functional Molecular Materials -- Chapter 7. Biphen[n]arenes: Synthesis and Host-Guest Properties -- Chapter 8. Pillararene-based Supramolecular Polymer. Section 3. Supramolecular Assemblies Based on Cyclodextrins -- Chapter 1. Functionalized Cyclodextrins and Their Applications -- Chapter 2. Cyclodextrin Polyrotaxanes: Synthesis, Analytics and Functions -- Chapter 3. Cyclodextrin Hybrid Inorganic Nanocomposites for Molecular Recognition, Selective Adsorption and Drug Delivery -- Chapter 4. Photoresponsive Supramolecular Assembly with Biological Function -- Chapter 5. Cyclodextrin-based Supramolecular Hydrogel -- Chapter 6. Supramolecular Chiral Photochemistry -- Chapter 7. Construction and Functions of Supramolecular Cyclodextrin Polymer -- Chapter 8. Construction of Cyclodextrin-based Magnetic Supramolecular Assemblies and Its Regulation of Cell Mobility -- Chapter 9. Supramolecular Assemblys Based on Multi-Charge Cyclodextrin Induced Aggregation. Section 4. Supramolecular Assemblies Based on Cucurbiturils -- Chapter 1. Stimuli Responsive Self-Assembly Based on Macrocyclic Hosts and Biomedical Applications -- Chapter 2. Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-type Hosts -- Chapter 3. Self-Assembled Two-Dimensional Organic Layers in Solution Phase -- Chapter 4. Modified Cucurbiturils with Various Ring Size: Synthesis -- Chapter 5. Modified Cucurbiturils with Various Ring Size: Assembly -- Chapter 6. Modified Cucurbiturils with Various Ring Size: Functions -- Chapter 7. Biological Systems Involving Cucurbituril -- Chapter 8. Cucurbituril-based Pseudorotaxanes and Rotaxanes -- Chapter 9. Construction of Supramolecular Networks Based on CB8. Section 5. Supramolecular Assemblies Based on Other Macrocycles -- Chapter 1. Supramolecular Catalysis Using Functional Organic Macrocycles and Molecular Cages -- Chapter 2. Porphyrins and Porphyrinoids: Syntheses, Structures, and Properties -- Chapter 3. Protein Self-Assembly: Strategies and Applications -- Chapter 4. Peptide Tectonics: towards Biomimetic and Bioinspired Soft Materials -- Chapter 5. Naphthol-based Macrocycles -- Chapter 6. Carbohydrate-based Macromolecular Self-Assembly -- Chapter 7. in vivo Self-Assembly of Polypeptide-based Nanomaterials -- Chapter 8. Construction of Well-Defined Discrete Metallacycles and Their Biological Applications. Section 6. Some Important Approaches in Macrocycle-based Supramolecular Chemistry -- Chapter 1. Molecular Simulations of Supramolecular Architectures -- Chapter 2. Thermodynamic Studies of Supramolecular Systems -- Chapter 3. Spectral Studies of Supramolecular Systems -- Chapter 4. Artificial Host Molecules Modifying Biomacromolecules -- Chapter 5 Controllable Synthesis of Polynuclear Metal Clusters within Macrocycles -- Chapter 6 Integrating Macrocyclic Rings into Functional 3D Printing Materials -- Chapter 7 Molecular Recognition with Helical Receptors -- Chapter 8 Supramolecular Interface for Biochemical Sensing Applications -- Chapter 9 Supramolecular Functional Complexes Constructed by Orthogonal Self-Assembly -- Chapter 10 Aggregation Induced Emission of Macrocycle-based Assemblies -- Chapter 11 Application of Rare Earth Metal Complexes in Macrocycle-based Assemblies -- Chapter 12 Two Dimensional Supramolecular Framwork Based on Host-Guest Self-Assembly. Section 7. Biological Applications -- Chapter 1. Theranostic Supramolecular Vesicle Systems -- Chapter 2. Host–Guest Sensing by Nanopores and Nanochannels -- Chapter 3. Highly Selective Ultrafast Proton Transport by Synthetic Unimolecular Proton Channels -- Chapter 4.Drug/Gene Delivery Platform Based on Supramolecular Interactions: Hyaluronic Aicd and Folic Acid as Targeting Units -- Chapter 5. Self-Assembling Peptides for Vaccine Development and Antibody Production -- Chapter 6. Supramolecules Assisted Transport of Ions and Molecules through Lipid Bilayers -- Chapter 7. Construction and Biomedical Applications of Macrocycle-based Supramolecular Topological Polymers -- Chapter 8. Supermolecules as Medicinal Drugs -- Chapter 9. Nanoscaled Cyclodextrin Supermolecular System for Drug and Gene Delivery -- Chapter 10. Immunity Regulation by Cyclodextrin-based Supramolecular Assembly -- Chapter 11. Industrial Application of Cyclodextrin. |
Record Nr. | UNINA-9910416142003321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen |
Autore | Zhou Shiyu <1970-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (353 pages) |
Disciplina | 658.00727 |
Soggetto topico |
Random data (Statistics)
Industrial management - Mathematics Industrial engineering - Statistical methods |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-4353-3
1-119-66630-9 1-119-66627-9 1-119-66629-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class. 9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit. 12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index. |
Record Nr. | UNINA-9910555198203321 |
Zhou Shiyu <1970-> | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Industrial data analytics for diagnosis and prognosis : a random effects modelling approach / / Shiyu Zhou, Yong Chen |
Autore | Zhou Shiyu <1970-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (353 pages) |
Disciplina | 658.00727 |
Soggetto topico |
Random data (Statistics)
Industrial management - Mathematics Industrial engineering - Statistical methods |
ISBN |
1-5231-4353-3
1-119-66630-9 1-119-66627-9 1-119-66629-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Industrial Data Analytics for Diagnosis and Prognosis -- Contents -- Preface -- Acknowledgments -- Acronyms -- Table of Notation -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Scope and Organization of the Book -- 1.3 How to Use This Book -- Bibliographic Note -- Part 1 Statistical Methods and Foundation for Industrial Data Analytics -- 2 Introduction to Data Visualization and Characterization -- 2.1 Data Visualization -- 2.1.1 Distribution Plots for a Single Variable -- 2.1.2 Plots for Relationship Between Two Variables -- 2.1.3 Plots for More than Two Variables -- 2.2 Summary Statistics -- 2.2.1 Sample Mean, Variance, and Covariance -- 2.2.2 Sample Mean Vector and Sample Covariance Matrix -- 2.2.3 Linear Combination of Variables -- Bibliographic Notes -- Exercises -- 3 Random Vectors and the Multivariate Normal Distribution -- 3.1 Random Vectors -- 3.2 Density Function and Properties of Multivariate Normal Distribution -- 3.3 Maximum Likelihood Estimation for Multivariate Normal Distribution -- 3.4 Hypothesis Testing on Mean Vectors -- 3.5 Bayesian Inference for Normal Distribution -- Bibliographic Notes -- Exercises -- 4 Explaining Covariance Structure: Principal Components -- 4.1 Introduction to Principal Component Analysis -- 4.1.1 Principal Components for More Than Two Variables -- 4.1.2 PCA with Data Normalization -- 4.1.3 Visualization of Principal Components -- 4.1.4 Number of Principal Components to Retain -- 4.2 Mathematical Formulation of Principal Components -- 4.2.1 Proportion of Variance Explained -- 4.2.2 Principal Components Obtained from the Correlation Matrix -- 4.3 Geometric Interpretation of Principal Components -- 4.3.1 Interpretation Based on Rotation -- 4.3.2 Interpretation Based on Low-Dimensional Approximation -- Bibliographic Notes -- Exercises.
5 Linear Model for Numerical and Categorical Response Variables -- 5.1 Numerical Response - Linear Regression Models -- 5.1.1 General Formulation of Linear Regression Model -- 5.1.2 Significance and Interpretation of Regression Coefficients -- 5.1.3 Other Types of Predictors in Linear Models -- 5.2 Estimation and Inferences of Model Parameters for Linear Regression -- 5.2.1 Least Squares Estimation -- 5.2.2 Maximum Likelihood Estimation -- 5.2.3 Variable Selection in Linear Regression -- 5.2.4 Hypothesis Testing -- 5.3 Categorical Response - Logistic Regression Model -- 5.3.1 General Formulation of Logistic Regression Model -- 5.3.2 Significance and Interpretation of Model Coefficients -- 5.3.3 Maximum Likelihood Estimation for Logistic Regression -- Bibliographic Notes -- Exercises -- 6 Linear Mixed Effects Model -- 6.1 Model Structure -- 6.2 Parameter Estimation for LME Model -- 6.2.1 Maximum Likelihood Estimation Method -- 6.2.2 Distribution-Free Estimation Methods -- 6.3 Hypothesis Testing -- 6.3.1 Testing for Fixed Effects -- 6.3.2 Testing for Variance-Covariance Parameters -- Bibliographic Notes -- Exercises -- Part 2 Random Effects Approaches for Diagnosis and Prognosis -- 7 Diagnosis of Variation Source Using PCA -- 7.1 Linking Variation Sources to PCA -- 7.2 Diagnosis of Single Variation Source -- 7.3 Diagnosis of Multiple Variation Sources -- 7.4 Data Driven Method for Diagnosing Variation Sources -- Bibliographic Notes -- Exercises -- 8 Diagnosis of Variation Sources Through Random Effects Estimation -- 8.1 Estimation of Variance Components -- 8.2 Properties of Variation Source Estimators -- 8.3 Performance Comparison of Variance Component Estimators -- Bibliographic Notes -- Exercises -- 9 Analysis of System Diagnosability -- 9.1 Diagnosability of Linear Mixed Effects Model -- 9.2 Minimal Diagnosable Class. 9.3 Measurement System Evaluation Based on System Diagnosability -- Bibliographic Notes -- Exercises -- Appendix -- 10 Prognosis Through Mixed Effects Models for Longitudinal Data -- 10.1 Mixed Effects Model for Longitudinal Data -- 10.2 Random Effects Estimation and Prediction for an Individual Unit -- 10.3 Estimation of Time-to-Failure Distribution -- 10.4 Mixed Effects Model with Mixture Prior Distribution -- 10.4.1 Mixture Distribution -- 10.4.2 Mixed Effects Model with Mixture Prior for Longitudinal Data -- 10.5 Recursive Estimation of Random Effects Using Kalman Filter -- 10.5.1 Introduction to the Kalman Filter -- 10.5.2 Random Effects Estimation Using the Kalman Filter -- Biographical Notes -- Exercises -- Appendix -- 11 Prognosis Using Gaussian Process Model -- 11.1 Introduction to Gaussian Process Model -- 11.2 GP Parameter Estimation and GP Based Prediction -- 11.3 Pairwise Gaussian Process Model -- 11.3.1 Introduction to Multi-output Gaussian Process -- 11.3.2 Pairwise GP Modeling Through Convolution Process -- 11.4 Multiple Output Gaussian Process for Multiple Signals -- 11.4.1 Model Structure -- 11.4.2 Model Parameter Estimation and Prediction -- 11.4.3 Time-to-Failure Distribution Based on GP Predictions -- Bibliographical Notes -- Exercises -- 12 Prognosis Through Mixed Effects Models for Time-to-Event Data -- 12.1 Models for Time-to-Event Data Without Covariates -- 12.1.1 Parametric Models for Time-to-Event Data -- 12.1.2 Non-parametric Models for Time-to-Event Data -- 12.2 Survival Regression Models -- 12.2.1 Cox PH Model with Fixed Covariates -- 12.2.2 Cox PH Model with Time Varying Covariates -- 12.2.3 Assessing Goodness of Fit -- 12.3 Joint Modeling of Time-to-Event Data and Longitudinal Data -- 12.3.1 Structure of Joint Model and Parameter Estimation -- 12.3.2 Online Event Prediction for a New Unit. 12.4 Cox PH Model with Frailty Term for Recurrent Events -- Bibliographical Notes -- Exercises -- Appendix -- Appendix: Basics of Vectors, Matrices, and Linear Vector Space -- References -- Index. |
Record Nr. | UNINA-9910830968103321 |
Zhou Shiyu <1970-> | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche |
Pubbl/distr/stampa | Piscataway, N.J. : , : IEEE, , 2014 |
Descrizione fisica | 1 online resource (350 pages) : illustrations |
Disciplina | 744 |
Soggetto topico |
Design
Machining - Technological innovations Manufacturing processes - Technological innovations |
ISBN | 1-4799-6270-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM) Innovative Design and Manufacturing |
Record Nr. | UNISA-996280027503316 |
Piscataway, N.J. : , : IEEE, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Innovative Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on / / edited by Yong Zeng, Yong Chen, Sofiane Achiche |
Pubbl/distr/stampa | Piscataway, N.J. : , : IEEE, , 2014 |
Descrizione fisica | 1 online resource (350 pages) : illustrations |
Disciplina | 744 |
Soggetto topico |
Design
Machining - Technological innovations Manufacturing processes - Technological innovations |
ISBN | 1-4799-6270-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing
Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM) Innovative Design and Manufacturing |
Record Nr. | UNINA-9910141894003321 |
Piscataway, N.J. : , : IEEE, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Reliability based airframe maintenance optimization and applications / / He Ren, Yong Chen, Xi Chen |
Autore | Ren He |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England : , : Academic Press, , 2017 |
Descrizione fisica | 1 online resource (237 pages) |
Disciplina | 629.1346 |
Soggetto topico |
Airplanes - Maintenance and repair
Airframes |
ISBN | 0-12-812669-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583370003321 |
Ren He | ||
London, England : , : Academic Press, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Technology Standard of Pipe Jacking / / by Lu Wang, Zhiguo Wu, Yong Chen, Zhaoquan Wang, Chunwen Yan, Taotao Tong |
Autore | Wang Lu |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (187 pages) |
Disciplina | 624 |
Altri autori (Persone) |
WuZhiguo
ChenYong WangZhaoquan YanChunwen TongTaotao |
Soggetto topico |
Civil engineering
Buildings - Design and construction Engineering geology Civil Engineering Building Construction and Design Geoengineering |
ISBN | 981-9955-97-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Scope -- Normative references -- Basic rules -- Construction organization design -- Pipe for pipe jacking -- Engineering environment and geological survey -- Working pit -- Pipe jacking equipment and instruments -- Jacking construction -- Special pipe jacking -- Pipe Jacking Construction Measures -- Treatment after jacking -- Construction monitoring -- Engineering quality and acceptance -- Health, safety and environmental protection management -- Production management -- Technical files. |
Record Nr. | UNINA-9910760274403321 |
Wang Lu | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Tracking Control of Networked Systems Via Sliding-Mode |
Autore | Li Meng |
Pubbl/distr/stampa | Singapore : , : Springer Singapore Pte. Limited, , 2021 |
Descrizione fisica | 1 online resource (198 pages) |
Altri autori (Persone) |
ChenYong
AliIkram |
Soggetto genere / forma | Electronic books. |
ISBN | 981-16-6514-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910508461703321 |
Li Meng | ||
Singapore : , : Springer Singapore Pte. Limited, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|