top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fractional Calculus : ICFDA 2018, Amman, Jordan, July 16-18 / / edited by Praveen Agarwal, Dumitru Baleanu, YangQuan Chen, Shaher Momani, José António Tenreiro Machado
Fractional Calculus : ICFDA 2018, Amman, Jordan, July 16-18 / / edited by Praveen Agarwal, Dumitru Baleanu, YangQuan Chen, Shaher Momani, José António Tenreiro Machado
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (251 pages)
Disciplina 515
Collana Springer Proceedings in Mathematics & Statistics
Soggetto topico Integral transforms
Operational calculus
Differential equations
Operator theory
Integral Transforms, Operational Calculus
Ordinary Differential Equations
Operator Theory
ISBN 981-15-0430-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto R. El-Khazali, Closed-Form Discretization of Fractional-Order Differential and Integral Operators -- J. A. Tenreiro Machado, On fractional-order characteristics of vegetable tissues and edible drinks -- R. Leandre, Some relations between bounded below elliptic Operators and Stochastic Analysis -- R. R. Nigmatullin Kazan, discrete geometrical invariants: how to differentiate the pattern sequences from the tested ones? -- H. Benaouda, Nonlocal conditions for Semilinear Fractional Differential Equations with Hilfer derivative -- R. Mel´ıcio, Offshore wind system in the way of Energy 4.0: ride through fault aided by fractional PI control and VRFB -- O. Abu Arqub, Soft numerical algorithm with convergence analysis for time-fractional partial IDEs constrained by Neumann conditions -- R. El-Khazali, Approximation of Fractional-order Operators -- S. Momani, Multistep approach for nonlinear fractional Bloch system using Adomian decomposition techniques -- E. A. Abdel-Rehim, Simulation of the Space–Time Fractional Ultrasound Waves with Attenuation in Fractal Media -- P. Agarwal, Certain Properties of Konhauser Polynomial via generalized Mittag-Leffler Function -- P. Agarwal, An Effective Numerical Technique Based on the Tau Method for the Eigenvalue Problems -- P. Agarwal, On hermite-hadamard type inequalities for co-ordinated convex mappings utilizing generalized fractional integrals.
Record Nr. UNINA-9910360850003321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Regional Analysis of Time-Fractional Diffusion Processes / / by Fudong Ge, YangQuan Chen, Chunhai Kou
Regional Analysis of Time-Fractional Diffusion Processes / / by Fudong Ge, YangQuan Chen, Chunhai Kou
Autore Ge Fudong
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIX, 250 p. 16 illus., 14 illus. in color.)
Disciplina 629.8
Soggetto topico Control engineering
Operator theory
System theory
Control and Systems Theory
Operator Theory
Systems Theory, Control
ISBN 3-319-72896-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Preliminary Results -- Regional Controllability -- Regional Observability -- Regional Detection of Unknown Sources -- Regional Stability -- Conclusions and Future Work.
Record Nr. UNINA-9910299580303321
Ge Fudong  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Big Data in Digital Agriculture Applications : Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence / / by Haoyu Niu, YangQuan Chen
Smart Big Data in Digital Agriculture Applications : Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence / / by Haoyu Niu, YangQuan Chen
Autore Niu Haoyu
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (243 pages)
Disciplina 338.10285
Collana Agriculture Automation and Control
Soggetto topico Agriculture
Plant physiology
Quantitative research
Engineering design
Plant Physiology
Data Analysis and Big Data
Engineering Design
ISBN 3-031-52645-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Why Big Data Is Not Smart Yet? -- 1. Introduction -- 2. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? -- Part II Smart Big Data Acquisition Platforms -- 3. Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads -- 4. The Edge-AI Sensors and Internet of Living Things (IoLT) -- 5. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture -- Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking -- 6. Fundamentals of Big Data, Machine Learning, and Computer VisionWorkflow -- 7. A Low-cost Proximate Sensing Method for Early Detection of Nematodes inWalnut Using Machine Learning Algorithms -- 8. Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery -- 9. Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning -- 10. Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning -- Part IV Towards Smart Big Data in Digital Agriculture -- 11. Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers -- 12. A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms -- 13. A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithms -- 14. Conclusions and Future Research.
Record Nr. UNINA-9910842292703321
Niu Haoyu  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Towards optimal point cloud processing for 3D reconstruction / / Guoxiang Zhang and YangQuan Chen
Towards optimal point cloud processing for 3D reconstruction / / Guoxiang Zhang and YangQuan Chen
Autore Zhang Guoxiang <1939->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (xix, 87 pages) : illustrations
Disciplina 621.3822
Collana SpringerBriefs in electrical and computer engineering. SpringerBriefs in signal processing
Soggetto topico Signal processing - Mathematics
Signal detection
Three-dimensional imaging
ISBN 3-030-96110-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910574064503321
Zhang Guoxiang <1939->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Towards tree-level evapotranspiration estimation with small UAVs in precision agriculture / / Haoyu Niu and YangQuan Chen
Towards tree-level evapotranspiration estimation with small UAVs in precision agriculture / / Haoyu Niu and YangQuan Chen
Autore Niu Haoyu
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (176 pages)
Disciplina 631
Soggetto topico Precision farming
Evapotranspiration - Measurement
Drone aircraft in remote sensing
ISBN 3-031-14937-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 What Is Evapotranspiration Estimation? -- 1.2 Challenges and Opportunities -- 1.3 Smart Big Data in Precision Agriculture: Acquisition and Advanced Analytics -- 1.3.1 What Is Smart Big Data in Precision Agriculture? -- 1.3.2 Plant Physiology-Informed Machine Learning: A New Frontier for Precision Agriculture -- 1.3.3 Big Data Acquisition and Advanced Analytics -- 1.3.4 Fractional Calculus (FC) and Fractional-Order Thinking (FOT) -- 1.3.5 Complexity and Inverse Power Laws (IPLs) -- 1.3.6 Heavy-Tailed Distributions -- 1.3.6.1 The Lévy Distribution -- 1.3.6.2 The Mittag-Leffler PDF -- 1.3.6.3 The Weibull Distribution -- 1.3.6.4 The Cauchy Distribution -- 1.3.6.5 The Pareto Distribution -- 1.3.6.6 The α-Stable Distribution -- 1.3.6.7 Mixture Distributions -- 1.3.6.8 The Gaussian Distribution -- 1.3.6.9 The Laplace Distribution -- 1.3.7 Big Data, Variability, and FC -- 1.3.7.1 The Hurst Parameter, fGn, and fBm -- 1.3.7.2 Fractional Lower-Order Moments (FLOMs) -- 1.3.7.3 Fractional Autoregressive Integrated Moving Average (FARIMA) and Gegenbauer Autoregressive Moving Average (GARMA) -- 1.3.7.4 Continuous-Time Random Walk (CTRW) -- 1.3.7.5 Unmanned Aerial Vehicles (UAVs) and Precision Agriculture -- 1.3.8 Optimal Machine Learning and Optimal Randomness -- 1.3.8.1 Derivative-Free Methods -- 1.3.8.2 Gradient-Based Methods -- 1.3.8.3 The Nesterov Accelerated Gradient Descent (NAGD) -- 1.4 Main Contributions -- 1.5 Book Organization -- 1.6 Results Reproducibility -- References -- 2 Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads -- 2.1 The UAV Platform -- 2.2 Lightweight Sensors -- 2.2.1 RGB Camera -- 2.2.2 Multispectral Camera -- 2.2.3 Shortwave Infrared Camera -- 2.2.4 Thermal Camera.
2.3 UAV Image Acquisition and Processing -- 2.3.1 Flight Mission Design -- 2.3.2 UAV Image Processing -- 2.4 Challenges and Opportunities -- 2.4.1 UAVs -- 2.4.2 UAV Path Planning and Image Processing -- 2.4.3 Preflight Path Planning -- 2.4.4 Multispectral Image Calibration -- 2.4.5 Thermal Camera Calibration and Image Processing -- 2.4.6 Image Stitching and Orthomosaick Image Generation -- 2.5 Case Study I: A UAV Resolution and Waveband Aware Path Planning for Irrigation -- 2.5.1 Introduction -- 2.5.2 Material and Methods -- 2.5.2.1 Onion Study Area -- 2.5.2.2 A UAV Platform and Sensors -- 2.5.2.3 UAV Image Collection and Preprocessing -- 2.5.2.4 Principal Component Analysis -- 2.5.2.5 Linear Discriminant Analysis -- 2.5.3 Results and Discussion -- 2.5.3.1 UAV Flight Height or Resolution's Effect -- 2.5.3.2 Wavebands Configuration's Effect -- 2.5.4 Conclusions -- 2.6 Case Study II: A Detailed Study on Accuracy of Uncooled Thermal Cameras -- 2.6.1 Introduction -- 2.6.2 Material and Methods -- 2.6.2.1 Study Site -- 2.6.2.2 Image Collection -- 2.6.2.3 Groundtruth Data Collection -- 2.6.3 Results and Discussion -- 2.6.3.1 Experiment Setup -- 2.6.3.2 Thermal Camera Warm-Up Time -- 2.6.3.3 Calibration Experiment -- 2.6.3.4 The View Angle of Thermal Camera -- 2.6.3.5 The Effect of Stitching -- 2.6.4 Conclusions and Future Work -- 2.7 Case Study III: High Spatial Resolution Has Little Impact on NDVI Mean Value -- 2.7.1 Introduction -- 2.7.2 Material and Methods -- 2.7.2.1 The Study Site -- 2.7.2.2 The UAV and the Multispectral Sensor -- 2.7.2.3 Details of the UAV Imagery Dataset -- 2.7.3 Results and Discussion -- 2.7.3.1 The Relationship Between NDVI and UAV Flight Height -- 2.7.3.2 Individual Tree Canopy Segmentation Using Support Vector Machine (SVM) -- 2.7.3.3 Entropy of Individual Tree-Level NDVI Image -- 2.7.4 Conclusions and Future Work.
2.8 Chapter Summary -- References -- 3 ET Estimation Methods with Small UAVs: A Literature Review -- 3.1 Introduction -- 3.2 Related Work -- 3.2.1 One-Source Energy Balance (OSEB) -- 3.2.2 High-Resolution Mapping of ET (HRMET) -- 3.2.3 Machine Learning (ML) and Artificial Neural Networks (ANN) -- 3.2.4 Two-Source Energy Balance (TSEB) Models -- 3.2.5 Dual-Temperature-Difference (DTD) Model -- 3.2.6 Surface Energy Balance Algorithm for Land (SEBAL) -- 3.2.7 Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) -- 3.3 Existing ET Estimation Methods with UAVs: Results and Discussion -- 3.3.1 OSEB and TSEB Models -- 3.3.2 HARMET Model -- 3.3.3 Machine Learning and Neural Networks -- 3.3.4 TSEB and DTD Models -- 3.3.5 TSEB and DATTUTDUT Models -- 3.3.6 SEBAL Model -- 3.3.7 METRIC and METRIC-HR Models -- 3.4 Chapter Summary -- References -- 4 Estimating ET Using Stochastic Configuration Network and UAV-Based Crop Coefficients -- 4.1 Introduction -- 4.2 Material and Methods -- 4.2.1 Pomegranate Study Area -- 4.2.2 The UAV Platform and Multispectral Camera -- 4.2.3 UAV Image Collection and Preprocessing -- 4.2.4 Deep Stochastic Configuration Networks (DeepSCNs) -- 4.3 Results and Discussion -- 4.3.1 Seasonal Kc and NDVI -- 4.3.2 Regression Models for Kc and NDVI -- 4.4 Conclusions -- 4.5 Case Study: Optimal Randomness for SCN with Heavy-Tailed Distributions -- 4.5.1 Introduction -- 4.5.2 SCN with Heavy-Tailed PDFs -- 4.5.3 A Regression Model and Parameter Tuning -- 4.5.3.1 Performance Comparison Among SCNs with Heavy-Tailed PDFs -- 4.5.4 MNIST Handwritten Digit Classification -- 4.5.4.1 Performance Comparison Among SCNs on MNIST -- 4.6 Chapter Summary -- References -- 5 Reliable Tree-Level ET Estimation Using Lysimeter and UAV Multispectral Imagery -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Study Site Description.
5.2.2 UAV Image Collection and Processing -- 5.3 Results and Discussion -- 5.3.1 Determination of Individual Tree Kc from NDVI -- 5.3.2 The Spatial Variability Mapping of Kc and ETc -- 5.3.3 Performance of the Individual Tree-Level ET Estimation -- 5.3.4 Conclusion -- 5.4 Chapter Summary -- References -- 6 Tree-Level Water Status Inference Using UAV Thermal Imagery and Machine Learning -- 6.1 Introduction -- 6.2 Material and Methods -- 6.2.1 Experimental Site and Irrigation Management -- 6.2.2 Ground Truth: Infrared Canopy and Air Temperature -- 6.2.3 Thermal Infrared Remote Sensing Data -- 6.2.3.1 UAV Thermal Image Collection and Processing -- 6.2.3.2 Tree Canopy Segmentation Using Support Vector Machine (SVM) -- 6.2.4 Complexity-Informed Machine Learning (CIML) -- 6.2.5 Principle of Tail Matching -- 6.2.5.1 Pareto Distribution -- 6.2.6 Machine Learning Classification Algorithms -- 6.2.7 Image Preprocessing for the CNN Model -- 6.3 Results and Discussion -- 6.3.1 Comparison of Canopy Temperature Per Tree Based on Ground Truth and UAV Thermal Imagery -- 6.3.2 The Relationship Between ΔT and Irrigation Treatment -- 6.3.3 The Classification Performance of CIML on Irrigation Treatment Levels -- 6.3.4 The Performance of the CNN Model -- 6.4 Conclusion and Future Research -- 6.5 Chapter Summary -- References -- 7 Conclusion and Future Research -- 7.1 Conclusions -- 7.2 Future Research -- References -- Index.
Record Nr. UNINA-9910624384403321
Niu Haoyu  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui