top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Efficient Uranium Reduction Extraction : Material Design and Reaction Mechanisms
Efficient Uranium Reduction Extraction : Material Design and Reaction Mechanisms
Autore Zhu Wenkun
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (302 pages)
Disciplina 546.431
Altri autori (Persone) HeRong
ChenTao
ISBN 3-527-84824-X
3-527-84825-8
3-527-84823-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Background of Uranium Chemistry -- 1.1 Introduction of Uranium in Nuclear Industry -- 1.1.1 Importance of Uranium Resource in Nuclear Industry -- 1.1.2 Uranium Cycle in Nuclear Industry -- 1.2 Coordination and Species of Uranium -- 1.2.1 General Chemical Properties of Uranium -- 1.2.2 Basic Uranium Species in the Solution‐Uranyl and Uranyl Compound -- 1.2.3 Valence Transformation of Uranium -- References -- Chapter 2 Introduction of Uranium Reduction Extraction -- 2.1 Introduction of Uranium Extraction -- 2.2 Introduction of Uranium Reduction Extraction -- 2.2.1 Basic Concept and Process of Uranium Reduction Extraction -- 2.2.2 Uranium Reduction by Zerovalent Iron -- 2.2.3 Photochemistry and Photochemical Uranium Reduction -- 2.2.4 Electrochemistry Involved in the Electrochemical Uranium Reduction -- 2.3 Key Factors to Influence the Uranium Reduction Extraction -- 2.3.1 Surface Adsorption and Coordination -- 2.3.2 Reductive Ability -- 2.4 Practical Situation that Requires Uranium Extraction -- 2.4.1 Uranium Extraction in Seawater -- 2.4.2 Uranium Extraction in Mining and Metallurgy -- 2.4.3 Uranium Extraction in Nuclear Wastewater -- References -- Chapter 3 Uranium Reduction Extraction by Modified Nano Zerovalent Iron -- 3.1 Introduction of Nano Zerovalent Iron -- 3.2 Material Design for Promoted Stability and Reductive Ability -- 3.3 Uranium Extraction Performance -- 3.4 Reaction Mechanism -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Uranium Reduction Extraction by Commercial Iron Powder -- 4.1 Introduction of Alternative Abundant Reductant‐Commercial Iron Powder -- 4.2 Ultrasound Enhancement of Uranium Extraction by Commercial Iron Powder -- 4.2.1 Extraction of U(VI) by Commercial Iron Powder -- 4.2.2 Analysis of Uranium Enrichment Status.
4.2.3 Key Mechanism of Ultrasonic Enhanced Commercial Iron Powder for Uranium Extraction -- 4.3 Microbial Sulfurization‐Enhanced Commercial Iron Powder Extraction of Uranium -- 4.3.1 Characterizations of BS‐ZVI -- 4.3.2 Performance of Photocatalytic Enrichment of U(VI) by BS‐ZVI -- 4.3.3 Photoelectric Properties and Energy Band Structure of BS‐ZVI -- 4.3.4 Photocatalytic Enrichment Mechanism of U(VI) -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Photocatalytic Uranium Reduction Extraction by Carbon‐Semiconductor Hybrid Material -- 5.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 5.2 Motivated Material Design of Carbon‐Semiconductor Hybrid Material -- 5.2.1 Introduction -- 5.2.2 Results and Discussions -- 5.2.3 Summary -- 5.3 Band Engineering of Carbon‐Semiconductor Hybrid Material -- 5.3.1 Introduction -- 5.3.2 Results and Discussions -- 5.3.3 Summary -- 5.4 Assembly of Carbon‐Semiconductor Hybrid Material for Facile Recycle Use -- 5.4.1 Introduction -- 5.4.2 Results and Discussions -- 5.4.3 Summary -- 5.5 Conclusion and Perspectives -- References -- Chapter 6 Photocatalytic Uranium Reduction Extraction by Surface Reconstructed Semiconductor -- 6.1 Introduction -- 6.2 Design of Hydrogen‐Incorporated Semiconductor‐Hydrogen‐Assist -- 6.2.1 Hydrogen‐Incorporated VO2 -- 6.2.2 Hydrogen‐Incorporated Oxidized WS2 -- 6.3 Hydrogen‐Incorporated Vacancy Engineering -- 6.3.1 Oxygen Vacancy‐Case of WO3‐x -- 6.3.2 Doping‐Induced Cation Vacancy‐Case of Fe‐Doped TiO2 -- 6.3.3 Oxygen Vacancy Engineering in Black TiO2@Co2P S‐Scheme -- 6.4 Conclusions -- References -- Chapter 7 Enhanced Photocatalytic Uranium Reduction Extraction by Electron Enhancement -- 7.1 Introduction -- 7.2 Plasmonic Enhancement of Uranium Extraction -- 7.2.1 Enhanced Uranium by Hot Electrons of Plasmonic Metals -- 7.2.1.1 Introduction -- 7.2.1.2 Summary.
7.2.2 Plasmonic Engineering - High‐Entropy Plasmonic Alloy -- 7.2.2.1 Introduction -- 7.2.2.2 Summary -- 7.2.3 Promotion of Electron Energy by Upconversion‐Case of Er Doping -- 7.2.3.1 Introduction -- 7.2.3.2 Summary -- 7.3 Enhanced by Cocatalysis -- 7.3.1 Introduction -- 7.3.1.1 Results and Discussions -- 7.3.2 Summary -- 7.4 Conclusion and Perspectives -- References -- Chapter 8 Photocatalytic Uranium Reduction Extraction in Tributyl Phosphate‐Kerosene System -- 8.1 Introduction of Tributyl Phosphate‐Kerosene System‐Spent Fuel Reprocessing -- 8.2 Material Design‐Self Oxidation of Red Phosphorus -- 8.3 Uranium Extraction in Tributyl Phosphate‐Kerosene System -- 8.4 Reaction Mechanism‐Self Oxidation Cycle -- 8.5 Conclusion and Perspectives -- References -- Chapter 9 Photocatalytic Uranium Reduction Extraction in Fluoride‐Containing System -- 9.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 9.2 Simultaneously Constructing U(VI) Constraint Sites and Water Oxidation Sites to Promote the Purification of Fluorine‐Containing Uranium Wastewater -- 9.2.1 Introduction -- 9.2.2 Results and Discussions -- 9.2.3 Summary -- 9.3 Advanced Photocatalytic Heterojunction with Plasmon Resonance Effect for Uranium Extraction from Fluoride‐Containing Uranium Wastewater -- 9.3.1 Introduction -- 9.3.2 Results and Discussions -- 9.3.3 Summary -- References -- Chapter 10 Electrochemical Uranium Reduction Extraction: Design of Electrode Materials -- 10.1 Introduction of Electrocatalytic Uranium Reduction Extraction -- 10.2 Edge‐Site Confinement for Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.2.1 Introduction -- 10.2.2 Results and Discussions -- 10.2.3 Summary -- 10.3 Facet‐Dependent Electrochemical Uranium Extraction in Seawater Over Fe3O4 Catalysts -- 10.3.1 Introduction -- 10.3.2 Results and Discussions -- 10.3.3 Conclusion.
10.4 Heterogeneous Interface‐Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.4.1 Introduction -- 10.4.2 Results and Discussions -- 10.4.3 Summary -- 10.5 Surface Hydroxyl‐Enhanced Electrochemical Extraction of Uranium -- 10.5.1 Introduction -- 10.5.2 Results and Discussions -- 10.5.3 Summary -- 10.6 Charge‐Separation Engineering for Electrocatalytic Uranium Reduction Extraction -- 10.6.1 Introduction -- 10.6.2 Results and Discussions -- 10.6.3 Summary -- 10.7 Conclusion and Perspectives -- References -- Chapter 11 Electrochemical Uranium Extraction from Seawater‐Reproduced Vacancy -- 11.1 Introduction of Electrocatalytic Uranium Extraction from Seawater -- 11.2 High‐Selective Site Oxygen Vacancy -- 11.3 Conclusion -- References -- Chapter 12 Electrochemical Uranium Extraction from Nuclear Wastewater of Fuel Production -- 12.1 Introduction of Nuclear Wastewater of Fuel Production: Ultrahigh Concentration of Fluoride -- 12.2 Material Design‐Ion Pair Sites -- 12.3 Uranium Extraction Performance -- 12.3.1 Simulated Wastewater -- 12.3.2 Real Nuclear Wastewater -- 12.4 Reaction Mechanism - Coordination and Crystallization -- 12.5 Conclusion -- References -- Chapter 13 Perspectives and Emerging Directions -- 13.1 Application in Real Situation -- 13.2 Criteria of Performance Evaluation -- 13.3 Device of Uranium Reduction Extraction -- 13.3.1 Chemical Reduction Coupled with External Field -- 13.3.2 Photocatalytic Device for Flow Cell -- 13.3.3 Electrocatalytic Device with Controlling System -- References -- Index -- EULA.
Record Nr. UNINA-9911021977403321
Zhu Wenkun  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Local Energy Markets : Paving the Path Toward the Low-Carbon Digital Power Distribution System / / by Meng Song, Ciwei Gao, Mingyu Yan, Yunting Yao, Tao Chen
Local Energy Markets : Paving the Path Toward the Low-Carbon Digital Power Distribution System / / by Meng Song, Ciwei Gao, Mingyu Yan, Yunting Yao, Tao Chen
Autore Song Meng
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (468 pages)
Disciplina 621.31
Altri autori (Persone) GaoCiwei
YanMingyu
YaoYunting
ChenTao
Soggetto topico Electric power production
Electric power distribution
Power resources
Electrical Power Engineering
Energy Grids and Networks
Natural Resource and Energy Economics
ISBN 9789819797509
9819797500
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. State of the art of local energy markets -- 2. Mental accounting theory-based trading strategy of prosumers -- 3. Prospect theory-based trading strategy and analysis of prosumers -- 4. Optimal scheduling strategy of networked data centers in multiple local energy markets -- 5. Incentive-compatible local energy market design with adaptive robust approach.
Record Nr. UNINA-9910983336603321
Song Meng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
Autore Xu Weilin
Pubbl/distr/stampa Weiheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (199 pages)
Disciplina 620.115
Soggetto topico Catalysts
Nanostructured materials
Soggetto genere / forma Electronic books.
ISBN 3-527-80969-4
3-527-80972-4
3-527-80971-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555033503321
Xu Weilin  
Weiheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
Autore Xu Weilin
Pubbl/distr/stampa Weiheim, Germany : , : Wiley-VCH, , [2019]
Descrizione fisica 1 online resource (199 pages)
Disciplina 620.115
Soggetto topico Catalysts
Nanostructured materials
ISBN 3-527-80969-4
3-527-80972-4
3-527-80971-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830907203321
Xu Weilin  
Weiheim, Germany : , : Wiley-VCH, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui