Efficient Uranium Reduction Extraction : Material Design and Reaction Mechanisms
| Efficient Uranium Reduction Extraction : Material Design and Reaction Mechanisms |
| Autore | Zhu Wenkun |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (302 pages) |
| Disciplina | 546.431 |
| Altri autori (Persone) |
HeRong
ChenTao |
| ISBN |
3-527-84824-X
3-527-84825-8 3-527-84823-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Background of Uranium Chemistry -- 1.1 Introduction of Uranium in Nuclear Industry -- 1.1.1 Importance of Uranium Resource in Nuclear Industry -- 1.1.2 Uranium Cycle in Nuclear Industry -- 1.2 Coordination and Species of Uranium -- 1.2.1 General Chemical Properties of Uranium -- 1.2.2 Basic Uranium Species in the Solution‐Uranyl and Uranyl Compound -- 1.2.3 Valence Transformation of Uranium -- References -- Chapter 2 Introduction of Uranium Reduction Extraction -- 2.1 Introduction of Uranium Extraction -- 2.2 Introduction of Uranium Reduction Extraction -- 2.2.1 Basic Concept and Process of Uranium Reduction Extraction -- 2.2.2 Uranium Reduction by Zerovalent Iron -- 2.2.3 Photochemistry and Photochemical Uranium Reduction -- 2.2.4 Electrochemistry Involved in the Electrochemical Uranium Reduction -- 2.3 Key Factors to Influence the Uranium Reduction Extraction -- 2.3.1 Surface Adsorption and Coordination -- 2.3.2 Reductive Ability -- 2.4 Practical Situation that Requires Uranium Extraction -- 2.4.1 Uranium Extraction in Seawater -- 2.4.2 Uranium Extraction in Mining and Metallurgy -- 2.4.3 Uranium Extraction in Nuclear Wastewater -- References -- Chapter 3 Uranium Reduction Extraction by Modified Nano Zerovalent Iron -- 3.1 Introduction of Nano Zerovalent Iron -- 3.2 Material Design for Promoted Stability and Reductive Ability -- 3.3 Uranium Extraction Performance -- 3.4 Reaction Mechanism -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Uranium Reduction Extraction by Commercial Iron Powder -- 4.1 Introduction of Alternative Abundant Reductant‐Commercial Iron Powder -- 4.2 Ultrasound Enhancement of Uranium Extraction by Commercial Iron Powder -- 4.2.1 Extraction of U(VI) by Commercial Iron Powder -- 4.2.2 Analysis of Uranium Enrichment Status.
4.2.3 Key Mechanism of Ultrasonic Enhanced Commercial Iron Powder for Uranium Extraction -- 4.3 Microbial Sulfurization‐Enhanced Commercial Iron Powder Extraction of Uranium -- 4.3.1 Characterizations of BS‐ZVI -- 4.3.2 Performance of Photocatalytic Enrichment of U(VI) by BS‐ZVI -- 4.3.3 Photoelectric Properties and Energy Band Structure of BS‐ZVI -- 4.3.4 Photocatalytic Enrichment Mechanism of U(VI) -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Photocatalytic Uranium Reduction Extraction by Carbon‐Semiconductor Hybrid Material -- 5.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 5.2 Motivated Material Design of Carbon‐Semiconductor Hybrid Material -- 5.2.1 Introduction -- 5.2.2 Results and Discussions -- 5.2.3 Summary -- 5.3 Band Engineering of Carbon‐Semiconductor Hybrid Material -- 5.3.1 Introduction -- 5.3.2 Results and Discussions -- 5.3.3 Summary -- 5.4 Assembly of Carbon‐Semiconductor Hybrid Material for Facile Recycle Use -- 5.4.1 Introduction -- 5.4.2 Results and Discussions -- 5.4.3 Summary -- 5.5 Conclusion and Perspectives -- References -- Chapter 6 Photocatalytic Uranium Reduction Extraction by Surface Reconstructed Semiconductor -- 6.1 Introduction -- 6.2 Design of Hydrogen‐Incorporated Semiconductor‐Hydrogen‐Assist -- 6.2.1 Hydrogen‐Incorporated VO2 -- 6.2.2 Hydrogen‐Incorporated Oxidized WS2 -- 6.3 Hydrogen‐Incorporated Vacancy Engineering -- 6.3.1 Oxygen Vacancy‐Case of WO3‐x -- 6.3.2 Doping‐Induced Cation Vacancy‐Case of Fe‐Doped TiO2 -- 6.3.3 Oxygen Vacancy Engineering in Black TiO2@Co2P S‐Scheme -- 6.4 Conclusions -- References -- Chapter 7 Enhanced Photocatalytic Uranium Reduction Extraction by Electron Enhancement -- 7.1 Introduction -- 7.2 Plasmonic Enhancement of Uranium Extraction -- 7.2.1 Enhanced Uranium by Hot Electrons of Plasmonic Metals -- 7.2.1.1 Introduction -- 7.2.1.2 Summary. 7.2.2 Plasmonic Engineering - High‐Entropy Plasmonic Alloy -- 7.2.2.1 Introduction -- 7.2.2.2 Summary -- 7.2.3 Promotion of Electron Energy by Upconversion‐Case of Er Doping -- 7.2.3.1 Introduction -- 7.2.3.2 Summary -- 7.3 Enhanced by Cocatalysis -- 7.3.1 Introduction -- 7.3.1.1 Results and Discussions -- 7.3.2 Summary -- 7.4 Conclusion and Perspectives -- References -- Chapter 8 Photocatalytic Uranium Reduction Extraction in Tributyl Phosphate‐Kerosene System -- 8.1 Introduction of Tributyl Phosphate‐Kerosene System‐Spent Fuel Reprocessing -- 8.2 Material Design‐Self Oxidation of Red Phosphorus -- 8.3 Uranium Extraction in Tributyl Phosphate‐Kerosene System -- 8.4 Reaction Mechanism‐Self Oxidation Cycle -- 8.5 Conclusion and Perspectives -- References -- Chapter 9 Photocatalytic Uranium Reduction Extraction in Fluoride‐Containing System -- 9.1 Introduction of Photocatalytic Uranium Reduction Extraction -- 9.2 Simultaneously Constructing U(VI) Constraint Sites and Water Oxidation Sites to Promote the Purification of Fluorine‐Containing Uranium Wastewater -- 9.2.1 Introduction -- 9.2.2 Results and Discussions -- 9.2.3 Summary -- 9.3 Advanced Photocatalytic Heterojunction with Plasmon Resonance Effect for Uranium Extraction from Fluoride‐Containing Uranium Wastewater -- 9.3.1 Introduction -- 9.3.2 Results and Discussions -- 9.3.3 Summary -- References -- Chapter 10 Electrochemical Uranium Reduction Extraction: Design of Electrode Materials -- 10.1 Introduction of Electrocatalytic Uranium Reduction Extraction -- 10.2 Edge‐Site Confinement for Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.2.1 Introduction -- 10.2.2 Results and Discussions -- 10.2.3 Summary -- 10.3 Facet‐Dependent Electrochemical Uranium Extraction in Seawater Over Fe3O4 Catalysts -- 10.3.1 Introduction -- 10.3.2 Results and Discussions -- 10.3.3 Conclusion. 10.4 Heterogeneous Interface‐Enhanced Electrocatalytic Uranium Reduction Extraction -- 10.4.1 Introduction -- 10.4.2 Results and Discussions -- 10.4.3 Summary -- 10.5 Surface Hydroxyl‐Enhanced Electrochemical Extraction of Uranium -- 10.5.1 Introduction -- 10.5.2 Results and Discussions -- 10.5.3 Summary -- 10.6 Charge‐Separation Engineering for Electrocatalytic Uranium Reduction Extraction -- 10.6.1 Introduction -- 10.6.2 Results and Discussions -- 10.6.3 Summary -- 10.7 Conclusion and Perspectives -- References -- Chapter 11 Electrochemical Uranium Extraction from Seawater‐Reproduced Vacancy -- 11.1 Introduction of Electrocatalytic Uranium Extraction from Seawater -- 11.2 High‐Selective Site Oxygen Vacancy -- 11.3 Conclusion -- References -- Chapter 12 Electrochemical Uranium Extraction from Nuclear Wastewater of Fuel Production -- 12.1 Introduction of Nuclear Wastewater of Fuel Production: Ultrahigh Concentration of Fluoride -- 12.2 Material Design‐Ion Pair Sites -- 12.3 Uranium Extraction Performance -- 12.3.1 Simulated Wastewater -- 12.3.2 Real Nuclear Wastewater -- 12.4 Reaction Mechanism - Coordination and Crystallization -- 12.5 Conclusion -- References -- Chapter 13 Perspectives and Emerging Directions -- 13.1 Application in Real Situation -- 13.2 Criteria of Performance Evaluation -- 13.3 Device of Uranium Reduction Extraction -- 13.3.1 Chemical Reduction Coupled with External Field -- 13.3.2 Photocatalytic Device for Flow Cell -- 13.3.3 Electrocatalytic Device with Controlling System -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911021977403321 |
Zhu Wenkun
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Local Energy Markets : Paving the Path Toward the Low-Carbon Digital Power Distribution System / / by Meng Song, Ciwei Gao, Mingyu Yan, Yunting Yao, Tao Chen
| Local Energy Markets : Paving the Path Toward the Low-Carbon Digital Power Distribution System / / by Meng Song, Ciwei Gao, Mingyu Yan, Yunting Yao, Tao Chen |
| Autore | Song Meng |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (468 pages) |
| Disciplina | 621.31 |
| Altri autori (Persone) |
GaoCiwei
YanMingyu YaoYunting ChenTao |
| Soggetto topico |
Electric power production
Electric power distribution Power resources Electrical Power Engineering Energy Grids and Networks Natural Resource and Energy Economics |
| ISBN |
9789819797509
9819797500 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. State of the art of local energy markets -- 2. Mental accounting theory-based trading strategy of prosumers -- 3. Prospect theory-based trading strategy and analysis of prosumers -- 4. Optimal scheduling strategy of networked data centers in multiple local energy markets -- 5. Incentive-compatible local energy market design with adaptive robust approach. |
| Record Nr. | UNINA-9910983336603321 |
Song Meng
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
| Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen |
| Autore | Xu Weilin |
| Pubbl/distr/stampa | Weiheim, Germany : , : Wiley-VCH, , [2019] |
| Descrizione fisica | 1 online resource (199 pages) |
| Disciplina | 620.115 |
| Soggetto topico |
Catalysts
Nanostructured materials |
| Soggetto genere / forma | Electronic books. |
| ISBN |
3-527-80969-4
3-527-80972-4 3-527-80971-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910555033503321 |
Xu Weilin
|
||
| Weiheim, Germany : , : Wiley-VCH, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen
| Single particle nanocatalysis : fundamentals and applications / / Weilin Xu, Yuwei Zhang, and Tao Chen |
| Autore | Xu Weilin |
| Pubbl/distr/stampa | Weiheim, Germany : , : Wiley-VCH, , [2019] |
| Descrizione fisica | 1 online resource (199 pages) |
| Disciplina | 620.115 |
| Soggetto topico |
Catalysts
Nanostructured materials |
| ISBN |
3-527-80969-4
3-527-80972-4 3-527-80971-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830907203321 |
Xu Weilin
|
||
| Weiheim, Germany : , : Wiley-VCH, , [2019] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||