Exercise, autophagy and chronic diseases / / Ning Chen, editor |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (267 pages) |
Disciplina | 617.1027 |
Soggetto topico |
Sports medicine
Autofàgia Malalties cròniques Exercici |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-4525-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Molecular Processes and Regulation of Autophagy -- 1 Introduction -- 2 Molecular Mechanism of Autophagy: A Historical Interest -- 3 The Molecular Mechanisms of Autophagy in Mammals -- 3.1 Autophagy Induction -- 3.2 Autophagosome Formation -- 3.3 Fusion Between Autophagosome and Lysosome -- 4 Molecular Regulation of Autophagy Machinery -- 4.1 The mTOR-Dependent Signaling Pathway -- 4.2 mTOR-Independent Signaling Pathways -- 4.2.1 Calcium Signaling in Autophagy -- 4.2.2 Calcium-Releasing Channel Control in Autophagy Mediated by TRPML -- 4.2.3 The mTOR-Independent TRPML1 Channel -- 4.2.4 The Regulation of Autophagy Via miRNA, ROS, and JNK-Beclin1 -- 5 Conclusion -- References -- Chapter 2: Acute and Chronic Exercise on Autophagy -- 1 Introduction -- 2 Exercise and Autophagy -- 2.1 Effect of Exercise on Skeletal Muscle Autophagy -- 2.2 Effect of Exercise on Myocardial Autophagy -- 2.3 Effect of Exercise on the Regulation of Autophagy Level in Hepatocytes -- 2.4 Effect of Exercise on Brain Function -- 3 Acute Exercise-Induced Autophagy -- 3.1 Underlying Mechanism for the Effect of Acute Exercise on Skeletal Muscle Autophagy -- 3.2 Underlying Mechanism for the Effect of Acute Exercise on Myocardial Autophagy -- 4 Chronic Exercise Induces Autophagy -- 4.1 Underlying Mechanism for the Effect of Chronic Exercise on Skeletal Muscle Autophagy -- 4.2 Underlying Mechanism for the Effect of Chronic Exercise on Myocardial Autophagy -- 5 Conclusion and Prospects -- References -- Chapter 3: The Beneficial Roles of Exercise-Mediated Autophagy in T2DM -- 1 The Background of T2DM -- 2 Autophagy in Insulin Target Tissues of T2DM -- 2.1 Hepatic Autophagy in T2DM -- 2.2 Adipose Autophagy in T2DM -- 2.3 Skeletal Muscle Autophagy in T2DM -- 2.4 Pancreatic β-Cell Autophagy in T2DM.
3 Exercise-Mediated Autophagy in T2DM -- 3.1 Exercise-Mediated Autophagy Improves Insulin Sensitivity in T2DM -- 3.2 Exercise-Mediated Autophagy Maintains Mitochondrial Quality Control in T2DM -- 3.3 Exercise-Mediated Autophagy Maintains Muscle Mass and Function in T2DM -- 4 Conclusion -- References -- Chapter 4: Exercise-Induced Autophagy and Obesity -- 1 Introduction -- 2 General Characteristics and Mechanism of Autophagy -- 3 Relationship Between Autophagy and Obesity -- 3.1 Lipophagy and Obesity -- 3.2 Mitophagy and Obesity -- 3.3 Reticulophagy and Obesity -- 4 The Effect of Exercise-Induced Autophagy on Obesity -- 4.1 Endurance Exercise -- 4.2 Resistance Exercise or Combined Endurance Exercise -- 5 Exercise Interventions for Obese Patients Targeting Autophagy -- 6 Conclusion -- References -- Chapter 5: Exercise-Mediated Autophagy and Nonalcoholic Fatty Liver Disease -- 1 Introduction -- 1.1 Epidemiology and Diagnosis of Nonalcoholic Fatty Liver Disease (NAFLD) -- 1.2 Pathological Process of NAFLD -- 1.3 Autophagy in NAFLD -- 1.3.1 Autophagy Regulates Lipid Storage in Hepatocytes -- 1.3.2 Autophagy Regulates the Differentiation and Production of Adipocytes -- 2 Effect of Exercise Intervention in NAFLD and Underlying Mechanisms -- 2.1 Exercise Increases Lipid Metabolism Via Regulation of Autophagy -- 2.2 Exercise Alleviates NAFLD by Reducing Mitochondrial Oxidative Stress -- 2.3 Exercise Regulates microRNA-Mediated Autophagy in NAFLD -- 2.4 Exercise Promotes Autophagy in NAFLD by Increasing H2S Activity -- 2.5 Exercise-Mediated Autophagy Regulates Liver Fibrosis and Late-Stage NAFLD -- 3 Weight Loss Is a Feasible Strategy for NAFLD? -- 4 Exercise Prescriptions -- 5 Conclusion and Future Perspectives -- References -- Chapter 6: Exercise-Mediated Autophagy and Brain Aging -- 1 Autophagy in the Aging Process. 1.1 Autophagy Protects Against Metabolic Stress -- 1.2 Autophagy Acts as a Cell Housekeeper -- 1.3 Autophagy as a Genome Guardian -- 2 Autophagy Regulators During Aging Process -- 2.1 mTOR -- 2.2 Sirtuin (SIRT1) -- 2.3 p53 -- 3 Brain Aging -- 3.1 Characteristics of Brain Aging -- 3.1.1 Cell Senescence -- 3.1.2 Accumulation of Damaged Cellular Contents -- 3.1.3 Structural Changes in Brain During Aging Process -- 3.2 Underlying Mechanisms of Brain Aging -- 3.3 Brain Aging and Neurodegenerative Diseases -- 4 Exercise-Induced Autophagy and Brain Aging -- 4.1 Exercise and Brain Aging in Basic Research -- 4.1.1 Autophagy -- 4.1.2 Mitochondria -- 4.1.3 Inflammation -- 4.1.4 DNA Repairing -- 4.1.5 Lifespan Extension -- 4.2 Exercise and Brain Aging in Clinical Research -- 4.2.1 Brain Volume -- 4.2.2 Cognitive Capacity -- 5 Outlook and Prospects -- References -- Chapter 7: Exercise-Mediated Autophagy and Alzheimer´s Disease -- 1 The Epidemiology of AD -- 2 The Pathogenesis of AD -- 2.1 Amyloid Cascade Hypothesis -- 2.2 Tau Protein Hyperphosphorylation -- 2.3 Neuroinflammation -- 2.4 Mitophagy Dysfunction -- 2.5 Cholinergic Neurotransmitter Pathway Abnormalities -- 3 Autophagy and AD -- 3.1 Autophagy -- 3.2 The Regulatory Role of Autophagy in AD -- 3.2.1 Autophagy and Aβ -- 3.2.2 Autophagy and Tau Protein -- 3.2.3 Autophagy and Neuroinflammation -- 4 Exercise-Induced Autophagy in AD -- 4.1 Exercise Can Improve the Level of Autophagy -- 4.1.1 Exercise Can Increase the Autophagy Level of Normal Brain Cells -- 4.1.2 Exercise Can Improve the Functional Status of Autophagy in Brain with Nerve Damage -- 4.2 Exercise Can Improve AD Through Inducing Autophagy -- 4.2.1 Exercise Can Improve AD by Increasing the Activation of Autophagy -- 4.2.2 Exercise Can Improve AD by Enhancing the Degradation Function of Lysosomes. 4.2.3 Exercise Can Reduce the Deposition of AD-Like Aβ Through Autophagy -- 4.2.4 Exercise Can Reduce the Abnormal Phosphorylation of Tau by Improving Autophagy -- 4.2.5 Exercise Can Regulate Synaptic Plasticity Through Autophagy -- References -- Chapter 8: Exercise-Induced Autophagy and Parkinson´s Disease -- 1 Overview of Parkinson´s Disease (PD) -- 1.1 The Epidemiology of PD -- 1.2 The Pathogenesis of PD -- 1.3 Pathological Mechanisms of PD -- 1.3.1 Neuropathological Pathogenesis -- 1.3.2 Genetic Factors -- 1.3.3 Environmental Factors -- 1.3.4 Other Factors -- Immune Factors -- Oxidative Stress Factors -- 1.4 Current Status of Treatments -- 2 Autophagy Is Involved in PD -- 2.1 Mitophagy and PD -- 2.1.1 Parkinson´s Gene-Encoded Protein Is Involved in Mitochondrial Autophagy -- PTEN-Induced Kinase 1 (PINK1) and PARKIN Proteins Regulate Mitochondrial Autophagy -- DJ-1 Protein Regulates Mitochondrial Autophagy -- SNCA (Gene Encoding α-Synuclein) and α-Synuclein Regulate Mitochondrial Autophagy -- Leucine-Rich Repeat Kinase 2 (LRRK2) Regulates Mitochondrial Autophagy -- Glucocerebrosidase (GBA) Regulates Mitochondrial Autophagy -- ATPase Cation-Transporting 13A2 (ATP13A2) Regulates Mitochondrial Autophagy -- 2.1.2 Environmental Factors Regulate Mitochondrial Autophagy -- 2.2 The Relationship Between ALP and PD -- 2.3 The Role of microRNAs in PD -- 3 The Relationship Between Exercise and PD -- 3.1 Regulation of Exercise on Autophagy -- 3.2 The Regulatory Role of Exercise-Mediated Autophagy in PD -- References -- Chapter 9: Exercise-Mediated Autophagy in Cardiovascular Diseases -- 1 Introduction -- 2 Autophagy in Cardiovascular Diseases -- 3 Exercise-Mediated Autophagy in CVDs -- 3.1 Exercise-Mediated Autophagy in Hypertension -- 3.2 Exercise-Mediated Autophagy in Atherosclerosis -- 3.2.1 Autophagy and Atherosclerosis. 3.2.2 Exercise and Atherosclerosis -- 3.2.3 Effect of Exercise on Autophagy in Aorta -- 3.2.4 Exercise-Induced Autophagy Inhibits Atherosclerosis by Regulating Inflammatory Response and Lipid Metabolism -- 3.3 Exercise-Mediated Autophagy Alleviates Myocardial Ischemia-Reperfusion Injury -- 3.3.1 The Regulation of Autophagy During Ischemia -- 3.3.2 The Regulation of Autophagy During Reperfusion -- 3.3.3 Exercise Regulates Autophagy-Mediated Myocardial Ischemia-Reperfusion Injury -- 3.4 Exercise-Induced Autophagy in Cardioprotection -- 4 Conclusion -- References -- Chapter 10: Exercise-Induced Autophagy in the Prevention and Treatment of Sarcopenia -- 1 The Pathogenesis of Sarcopenia -- 2 The Regulation of Autophagy in Sarcopenia -- 2.1 ALS and UPS -- 2.2 Mitochondrial Quality Control -- 2.3 Satellite Cells -- 2.4 Inflammation -- 3 Exercise-Induced Autophagy Regulates Sarcopenia -- 3.1 Exercise and Sarcopenia -- 3.2 Exercise and Autophagy -- 3.3 Molecular Regulators of Exercise-Induced Autophagy -- 3.3.1 AMPK -- 3.3.2 PGC-1α -- 3.3.3 mTOR -- 3.3.4 FoxO -- 4 Exercise Advices -- 5 Conclusion -- References -- Chapter 11: Prospective Advances in Exercise-Induced Autophagy on Health -- 1 Introduction -- 2 Autophagy Pathways -- 3 Autophagy Is Activated During Exercise -- 4 Molecular Mechanisms of Exercise-Induced Autophagy -- 4.1 AMPK-mTOR-ULK1 Signal Pathway -- 4.2 Akt-mTOR Signal Pathway -- 4.3 Beclin1-Bcl-2 Complex -- 4.4 FoxO Family -- 4.5 Other Signal Pathways -- 5 Mitophagy -- 6 Exercise Adaptation for Health Promotion Through Induced Autophagy/Mitophagy -- 6.1 Exercise Performance -- 6.2 Skeletal Muscle Mass -- 6.3 Cardiovascular Adaptation -- 6.4 Glycolipid Metabolism Regulation -- 6.5 Mitochondrial Adaptation -- 6.6 Disease Status -- 7 Conclusion and Future Perspective -- References. Chapter 12: Exercise Mimetic Pills for Chronic Diseases Based on Autophagy. |
Record Nr. | UNINA-9910502652503321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Interculturality as an Object of Research and Education : Observing, Reflecting and Critiquing / / by Fred Dervin, Ning Chen |
Autore | Dervin Fred <1974-> |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (VII, 91 p. 13 illus., 12 illus. in color.) |
Disciplina | 305.80015118 |
Collana | SpringerBriefs in Education |
Soggetto topico |
Education - Philosophy
Educational sociology Education, Higher Educational Philosophy Sociology of Education Higher Education Multiculturalisme Educació superior Filosofia de l'educació |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-9915-02-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 On the bridge of Interculturality -- Chapter 2 Interculturality as a deafening and blinding ideological notion -- Chapter 3 Interculturality-as-altering -- Chapter 4 The power of Mirroring: Towards a catoptric of Interculturality -- Chapter 5 Observality for ‘silent’ reflexivity and criticality -- Chapter 6 Observing our observality -- Chapter 7 Accepting to be naïve like a fool -- References. |
Record Nr. | UNINA-9910686471603321 |
Dervin Fred <1974-> | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Internet and Network Economics [[electronic resource] ] : 7th International Workshop, WINE 2011, Singapore, December 11-14, 2011, Proceedings / / edited by Ning Chen, Edith Elkind, Elias Koutsoupias |
Edizione | [1st ed. 2011.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 |
Descrizione fisica | 1 online resource (XII, 420 p.) |
Disciplina | 380.1 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Computer communication systems
Algorithms Software engineering Application software Computer science—Mathematics Computers Computer Communication Networks Algorithm Analysis and Problem Complexity Software Engineering Information Systems Applications (incl. Internet) Discrete Mathematics in Computer Science Computation by Abstract Devices |
ISBN | 3-642-25510-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466256303316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Robustness optimization for IoT topology / / Tie Qiu, Ning Chen and Songwei Zhang |
Autore | Qiu Tie |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore Pte Ltd., , [2022] |
Descrizione fisica | 1 online resource (224 pages) |
Disciplina | 004.678 |
Soggetto topico | Internet of things |
ISBN | 981-16-9609-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910574855703321 |
Qiu Tie | ||
Singapore : , : Springer Nature Singapore Pte Ltd., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Robustness optimization for IoT topology / / Tie Qiu, Ning Chen and Songwei Zhang |
Autore | Qiu Tie |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore Pte Ltd., , [2022] |
Descrizione fisica | 1 online resource (224 pages) |
Disciplina | 004.678 |
Soggetto topico | Internet of things |
ISBN | 981-16-9609-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996478867103316 |
Qiu Tie | ||
Singapore : , : Springer Nature Singapore Pte Ltd., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|