Fracture mechanics of electromagnetic materials [[electronic resource] ] : nonlinear field theory and applications / / Xiaohong Chen, Yiu-Wing Mai |
Autore | Chen Xiaohong |
Pubbl/distr/stampa | London, : Imperial College Press |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
620.1/126
620.1126 |
Altri autori (Persone) | MaiY. W. <1946-> |
Soggetto topico |
Fracture mechanics - Mathematics
Nonlinear theories Magnetic materials - Fracture |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-85062-1
1-84816-664-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword; Preface; Contents; List of Tables; List of Figures; Chapter 1: Fundamentals of Fracture Mechanics; 1.1 Historical Perspective; 1.2 Stress Intensity Factors (SIF); 1.3 Energy Release Rate (ERR); 1.4 J-Integral; 1.5 Dynamic Fracture; 1.6 Viscoelastic Fracture; 1.7 Essential Work of Fracture (EWF); 1.8 Configuration Force (Material Force) Method; 1.9 Cohesive Zone and Virtual Internal Bond Models; Chapter 2 : Elements of Electrodynamics of Continua; 2.1 Notations; 2.1.1 Eulerian and Lagrangian descriptions; 2.1.2 Electromagnetic field; 2.1.3 Electromagnetic body force and couple
2.1.4 Electromagnetic stress tensor and momentum vector2.1.5 Electromagnetic power; 2.1.6 Poynting theorem; 2.2 Maxwell Equations; 2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energy; 2.4 Constitutive Relations; 2.5 Linearized Theory; Chapter 3 : Introduction to Thermoviscoelasticity; 3.1 Thermoelasticity; 3.2 Viscoelasticity; 3.3 Coupled Theory of Thermoviscoelasticity; 3.3.1 Fundamental principles of thermodynamics; 3.3.2 Formulation based on Helmholtz free energy functional; 3.3.3 Formulation based on Gibbs free energy functional 3.4 Thermoviscoelastic Boundary-Initial Value ProblemsChapter 4 : Overview on Fracture of Electromagnetic Materials; 4.1 Introduction; 4.2 Basic Field Equations; 4.3 General Solution Procedures; 4.4 Debates on Crack-Face Boundary Conditions; 4.5 Fracture Criteria; 4.5.1 Field intensity factors; 4.5.2 Path-independent integral; 4.5.3 Mechanical strain energy release rate; 4.5.4 Global and local energy release rates; 4.6 Experimental Observations; 4.6.1 Indentation test; 4.6.2 Compact tension test; 4.6.3 Bending test; 4.7 Nonlinear Studies; 4.7.1 Electrostriction/magnetostriction 4.7.2 Polarization/magnetization saturation4.7.3 Domain switching; 4.7.4 Domain wall motion; 4.8 Status and Prospects; Chapter 5 : Crack Driving Force in Electro-Thermo-Elastodynamic Fracture; 5.1 Introduction; 5.2 Fundamental Principles of Thermodynamics; 5.3 Energy Flux and Dynamic Contour Integral; 5.4 Dynamic Energy Release Rate Serving as Crack Driving Force; 5.5 Configuration Force and Energy-Momentum Tensor; 5.6 Coupled Electromechanical Jump/Boundary Conditions; 5.7 Asymptotic Near-Tip Field Solution; 5.8 Remarks Chapter 6 : Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids6.1 Introduction; 6.2 Thermodynamic Formulation of Fully Coupled Dynamic Framework; 6.2.1 Field equations and jump conditions; 6.2.2 Dynamic energy release rate; 6.2.3 Invariant integral; 6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions; 6.3.1 Generalized plane crack problem; 6.3.2 Steady-state solution; 6.3.3 Path-independent integral for steady crack growth; 6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case; 6.5 Summary Chapter 7 : Dynamic Crack Propagation in Magneto-Electro-Elastic Solids |
Record Nr. | UNINA-9910464790003321 |
Chen Xiaohong | ||
London, : Imperial College Press | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fracture mechanics of electromagnetic materials [[electronic resource] ] : nonlinear field theory and applications / / Xiaohong Chen, Yiu-Wing Mai |
Autore | Chen Xiaohong |
Pubbl/distr/stampa | London, : Imperial College Press |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
620.1/126
620.1126 |
Altri autori (Persone) | MaiY. W. <1946-> |
Soggetto topico |
Fracture mechanics - Mathematics
Nonlinear theories Magnetic materials - Fracture |
ISBN |
1-283-85062-1
1-84816-664-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword; Preface; Contents; List of Tables; List of Figures; Chapter 1: Fundamentals of Fracture Mechanics; 1.1 Historical Perspective; 1.2 Stress Intensity Factors (SIF); 1.3 Energy Release Rate (ERR); 1.4 J-Integral; 1.5 Dynamic Fracture; 1.6 Viscoelastic Fracture; 1.7 Essential Work of Fracture (EWF); 1.8 Configuration Force (Material Force) Method; 1.9 Cohesive Zone and Virtual Internal Bond Models; Chapter 2 : Elements of Electrodynamics of Continua; 2.1 Notations; 2.1.1 Eulerian and Lagrangian descriptions; 2.1.2 Electromagnetic field; 2.1.3 Electromagnetic body force and couple
2.1.4 Electromagnetic stress tensor and momentum vector2.1.5 Electromagnetic power; 2.1.6 Poynting theorem; 2.2 Maxwell Equations; 2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energy; 2.4 Constitutive Relations; 2.5 Linearized Theory; Chapter 3 : Introduction to Thermoviscoelasticity; 3.1 Thermoelasticity; 3.2 Viscoelasticity; 3.3 Coupled Theory of Thermoviscoelasticity; 3.3.1 Fundamental principles of thermodynamics; 3.3.2 Formulation based on Helmholtz free energy functional; 3.3.3 Formulation based on Gibbs free energy functional 3.4 Thermoviscoelastic Boundary-Initial Value ProblemsChapter 4 : Overview on Fracture of Electromagnetic Materials; 4.1 Introduction; 4.2 Basic Field Equations; 4.3 General Solution Procedures; 4.4 Debates on Crack-Face Boundary Conditions; 4.5 Fracture Criteria; 4.5.1 Field intensity factors; 4.5.2 Path-independent integral; 4.5.3 Mechanical strain energy release rate; 4.5.4 Global and local energy release rates; 4.6 Experimental Observations; 4.6.1 Indentation test; 4.6.2 Compact tension test; 4.6.3 Bending test; 4.7 Nonlinear Studies; 4.7.1 Electrostriction/magnetostriction 4.7.2 Polarization/magnetization saturation4.7.3 Domain switching; 4.7.4 Domain wall motion; 4.8 Status and Prospects; Chapter 5 : Crack Driving Force in Electro-Thermo-Elastodynamic Fracture; 5.1 Introduction; 5.2 Fundamental Principles of Thermodynamics; 5.3 Energy Flux and Dynamic Contour Integral; 5.4 Dynamic Energy Release Rate Serving as Crack Driving Force; 5.5 Configuration Force and Energy-Momentum Tensor; 5.6 Coupled Electromechanical Jump/Boundary Conditions; 5.7 Asymptotic Near-Tip Field Solution; 5.8 Remarks Chapter 6 : Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids6.1 Introduction; 6.2 Thermodynamic Formulation of Fully Coupled Dynamic Framework; 6.2.1 Field equations and jump conditions; 6.2.2 Dynamic energy release rate; 6.2.3 Invariant integral; 6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions; 6.3.1 Generalized plane crack problem; 6.3.2 Steady-state solution; 6.3.3 Path-independent integral for steady crack growth; 6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case; 6.5 Summary Chapter 7 : Dynamic Crack Propagation in Magneto-Electro-Elastic Solids |
Record Nr. | UNINA-9910789345903321 |
Chen Xiaohong | ||
London, : Imperial College Press | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / / Xiaohong Chen, Yiu-Wing Mai |
Autore | Chen Xiaohong |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London, : Imperial College Press |
Descrizione fisica | 1 online resource (326 p.) |
Disciplina |
620.1/126
620.1126 |
Altri autori (Persone) | MaiY. W. <1946-> |
Soggetto topico |
Fracture mechanics - Mathematics
Nonlinear theories Magnetic materials - Fracture |
ISBN |
1-283-85062-1
1-84816-664-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword; Preface; Contents; List of Tables; List of Figures; Chapter 1: Fundamentals of Fracture Mechanics; 1.1 Historical Perspective; 1.2 Stress Intensity Factors (SIF); 1.3 Energy Release Rate (ERR); 1.4 J-Integral; 1.5 Dynamic Fracture; 1.6 Viscoelastic Fracture; 1.7 Essential Work of Fracture (EWF); 1.8 Configuration Force (Material Force) Method; 1.9 Cohesive Zone and Virtual Internal Bond Models; Chapter 2 : Elements of Electrodynamics of Continua; 2.1 Notations; 2.1.1 Eulerian and Lagrangian descriptions; 2.1.2 Electromagnetic field; 2.1.3 Electromagnetic body force and couple
2.1.4 Electromagnetic stress tensor and momentum vector2.1.5 Electromagnetic power; 2.1.6 Poynting theorem; 2.2 Maxwell Equations; 2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energy; 2.4 Constitutive Relations; 2.5 Linearized Theory; Chapter 3 : Introduction to Thermoviscoelasticity; 3.1 Thermoelasticity; 3.2 Viscoelasticity; 3.3 Coupled Theory of Thermoviscoelasticity; 3.3.1 Fundamental principles of thermodynamics; 3.3.2 Formulation based on Helmholtz free energy functional; 3.3.3 Formulation based on Gibbs free energy functional 3.4 Thermoviscoelastic Boundary-Initial Value ProblemsChapter 4 : Overview on Fracture of Electromagnetic Materials; 4.1 Introduction; 4.2 Basic Field Equations; 4.3 General Solution Procedures; 4.4 Debates on Crack-Face Boundary Conditions; 4.5 Fracture Criteria; 4.5.1 Field intensity factors; 4.5.2 Path-independent integral; 4.5.3 Mechanical strain energy release rate; 4.5.4 Global and local energy release rates; 4.6 Experimental Observations; 4.6.1 Indentation test; 4.6.2 Compact tension test; 4.6.3 Bending test; 4.7 Nonlinear Studies; 4.7.1 Electrostriction/magnetostriction 4.7.2 Polarization/magnetization saturation4.7.3 Domain switching; 4.7.4 Domain wall motion; 4.8 Status and Prospects; Chapter 5 : Crack Driving Force in Electro-Thermo-Elastodynamic Fracture; 5.1 Introduction; 5.2 Fundamental Principles of Thermodynamics; 5.3 Energy Flux and Dynamic Contour Integral; 5.4 Dynamic Energy Release Rate Serving as Crack Driving Force; 5.5 Configuration Force and Energy-Momentum Tensor; 5.6 Coupled Electromechanical Jump/Boundary Conditions; 5.7 Asymptotic Near-Tip Field Solution; 5.8 Remarks Chapter 6 : Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids6.1 Introduction; 6.2 Thermodynamic Formulation of Fully Coupled Dynamic Framework; 6.2.1 Field equations and jump conditions; 6.2.2 Dynamic energy release rate; 6.2.3 Invariant integral; 6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditions; 6.3.1 Generalized plane crack problem; 6.3.2 Steady-state solution; 6.3.3 Path-independent integral for steady crack growth; 6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case; 6.5 Summary Chapter 7 : Dynamic Crack Propagation in Magneto-Electro-Elastic Solids |
Record Nr. | UNINA-9910827761903321 |
Chen Xiaohong | ||
London, : Imperial College Press | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|