top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cyber security meets machine learning / / Xiaofeng Chen, Willy Susilo, Elisa Bertino
Cyber security meets machine learning / / Xiaofeng Chen, Willy Susilo, Elisa Bertino
Autore Chen Xiaofeng
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (168 pages)
Disciplina 006.31
Soggetto topico Machine learning - Technique
Machine learning - Security measures
ISBN 981-336-726-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- IoT Attacks and Malware -- 1 Introduction -- 2 Background -- 2.1 Cybersecurity Kill Chains -- 2.2 Major IoT Security Concerns -- 3 Attack Classification -- 3.1 Passive/Information Stealing Attacks -- 3.2 Service Degradation Attacks -- 3.3 DDoS Attacks -- 4 IoT Malware Analysis and Classification -- 5 AI-Based IDS Solutions -- 6 Conclusion -- References -- Machine Learning-Based Online Source Identification for Image Forensics -- 1 Introduction -- 2 Related Work -- 2.1 Features Engineering for Image Source Identification -- 2.2 Statistical Learning-Based Image Source Identification -- 3 Proposed Scheme: OSIU -- 3.1 Unknown Sample Triage -- 3.2 Unknown Image Discovery -- 3.3 (K+1)-class Classification -- 4 Experiments and Results -- 4.1 Dataset and Experiment Settings -- 4.2 Features -- 4.3 Evaluation Metrics -- 4.4 Performance of Triaging Unknown Samples -- 4.5 Performance of OSIU -- 5 Conclusion -- References -- Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles -- 1 Introduction -- 2 Communication Security for Unmanned Aerial Vehicles -- 2.1 UAV Communication Model -- 2.2 Attack Model -- 3 Reinforcement Learning Based UAV Communication Security -- 3.1 Reinforcement Learning Based Anti-Jamming Communications -- 3.2 Reinforcement Learning Based UAV Communications Against Smart Attacks -- 4 UAV Secure Communication Game -- 4.1 Game Model -- 4.2 Nash Equilibrium of the Game -- 5 Related Work -- 5.1 General Anti-jamming Policies in UAV-Aided Communication -- 5.2 Reinforcement Learning in Anti-jamming Communication -- 5.3 Game Theory in Anti-jamming Communication -- 6 Conclusion -- References -- Visual Analysis of Adversarial Examples in Machine Learning -- 1 Introduction -- 2 Adversarial Examples -- 3 Generation of Adversarial Examples -- 4 Properties of Adversarial Examples.
5 Distinguishing Adversarial Examples -- 6 Robustness of Models -- 7 Challenges and Research Directions -- 8 Conclusion -- References -- Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems -- 1 Introduction -- 2 Background and Related Work -- 2.1 Speech Recognition -- 2.2 Adversarial Examples -- 2.3 Related Work -- 3 Overview -- 3.1 Motivation -- 3.2 Technical Challenges -- 4 White-Box Attack -- 4.1 Threat Model of White-Box Attack -- 4.2 The Detail Decoding Process of Kaldi -- 4.3 Gradient Descent to Craft Audio Clip -- 4.4 Practical Adversarial Attack Against White-Box Model -- 4.5 Experiment Setup of CommanderSong Attack -- 4.6 Evaluation of CommanderSong Attack -- 5 Black-Box Attack -- 5.1 Threat Model of Black-Box Attack -- 5.2 Transferability Based Approach -- 5.3 Local Model Approximation Approach -- 5.4 Alternate Models Based Generation Approach -- 5.5 Experiment Setup of Devil's Whisper Attack -- 5.6 Evaluation of Devil's Whisper Attack -- 6 Defense -- 7 Conclusion -- Appendix -- References -- A Survey on Secure Outsourced Deep Learning -- 1 Introduction -- 2 Deep Learning -- 2.1 Brief Survey on Deep Learning -- 2.2 Architecture of Deep Learning -- 2.3 Main Computation in Deep Learning -- 3 Outsourced Computation -- 3.1 Brief Survey on Outsourced Computation -- 3.2 System Model -- 3.3 Security Requirements -- 4 Outsourced Deep Learning -- 4.1 Brief Review on Outsourced Deep Learning -- 4.2 Privacy Concerns in Outsourced Deep Learning -- 4.3 Privacy-Preserving Techniques for Outsourced Deep Learning -- 4.4 Taxonomy Standard -- 4.5 Privacy-Preserving Training Outsourcing -- 4.6 Privacy-Preserving Inference Outsourcing -- 5 Conclusion and Future Research Perspectives -- References.
Record Nr. UNINA-9910488713403321
Chen Xiaofeng  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cyber security meets machine learning / / Xiaofeng Chen, Willy Susilo, Elisa Bertino
Cyber security meets machine learning / / Xiaofeng Chen, Willy Susilo, Elisa Bertino
Autore Chen Xiaofeng
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (168 pages)
Disciplina 006.31
Soggetto topico Machine learning - Technique
Machine learning - Security measures
ISBN 981-336-726-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- IoT Attacks and Malware -- 1 Introduction -- 2 Background -- 2.1 Cybersecurity Kill Chains -- 2.2 Major IoT Security Concerns -- 3 Attack Classification -- 3.1 Passive/Information Stealing Attacks -- 3.2 Service Degradation Attacks -- 3.3 DDoS Attacks -- 4 IoT Malware Analysis and Classification -- 5 AI-Based IDS Solutions -- 6 Conclusion -- References -- Machine Learning-Based Online Source Identification for Image Forensics -- 1 Introduction -- 2 Related Work -- 2.1 Features Engineering for Image Source Identification -- 2.2 Statistical Learning-Based Image Source Identification -- 3 Proposed Scheme: OSIU -- 3.1 Unknown Sample Triage -- 3.2 Unknown Image Discovery -- 3.3 (K+1)-class Classification -- 4 Experiments and Results -- 4.1 Dataset and Experiment Settings -- 4.2 Features -- 4.3 Evaluation Metrics -- 4.4 Performance of Triaging Unknown Samples -- 4.5 Performance of OSIU -- 5 Conclusion -- References -- Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles -- 1 Introduction -- 2 Communication Security for Unmanned Aerial Vehicles -- 2.1 UAV Communication Model -- 2.2 Attack Model -- 3 Reinforcement Learning Based UAV Communication Security -- 3.1 Reinforcement Learning Based Anti-Jamming Communications -- 3.2 Reinforcement Learning Based UAV Communications Against Smart Attacks -- 4 UAV Secure Communication Game -- 4.1 Game Model -- 4.2 Nash Equilibrium of the Game -- 5 Related Work -- 5.1 General Anti-jamming Policies in UAV-Aided Communication -- 5.2 Reinforcement Learning in Anti-jamming Communication -- 5.3 Game Theory in Anti-jamming Communication -- 6 Conclusion -- References -- Visual Analysis of Adversarial Examples in Machine Learning -- 1 Introduction -- 2 Adversarial Examples -- 3 Generation of Adversarial Examples -- 4 Properties of Adversarial Examples.
5 Distinguishing Adversarial Examples -- 6 Robustness of Models -- 7 Challenges and Research Directions -- 8 Conclusion -- References -- Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems -- 1 Introduction -- 2 Background and Related Work -- 2.1 Speech Recognition -- 2.2 Adversarial Examples -- 2.3 Related Work -- 3 Overview -- 3.1 Motivation -- 3.2 Technical Challenges -- 4 White-Box Attack -- 4.1 Threat Model of White-Box Attack -- 4.2 The Detail Decoding Process of Kaldi -- 4.3 Gradient Descent to Craft Audio Clip -- 4.4 Practical Adversarial Attack Against White-Box Model -- 4.5 Experiment Setup of CommanderSong Attack -- 4.6 Evaluation of CommanderSong Attack -- 5 Black-Box Attack -- 5.1 Threat Model of Black-Box Attack -- 5.2 Transferability Based Approach -- 5.3 Local Model Approximation Approach -- 5.4 Alternate Models Based Generation Approach -- 5.5 Experiment Setup of Devil's Whisper Attack -- 5.6 Evaluation of Devil's Whisper Attack -- 6 Defense -- 7 Conclusion -- Appendix -- References -- A Survey on Secure Outsourced Deep Learning -- 1 Introduction -- 2 Deep Learning -- 2.1 Brief Survey on Deep Learning -- 2.2 Architecture of Deep Learning -- 2.3 Main Computation in Deep Learning -- 3 Outsourced Computation -- 3.1 Brief Survey on Outsourced Computation -- 3.2 System Model -- 3.3 Security Requirements -- 4 Outsourced Deep Learning -- 4.1 Brief Review on Outsourced Deep Learning -- 4.2 Privacy Concerns in Outsourced Deep Learning -- 4.3 Privacy-Preserving Techniques for Outsourced Deep Learning -- 4.4 Taxonomy Standard -- 4.5 Privacy-Preserving Training Outsourcing -- 4.6 Privacy-Preserving Inference Outsourcing -- 5 Conclusion and Future Research Perspectives -- References.
Record Nr. UNISA-996464488703316
Chen Xiaofeng  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Security and privacy in social networks and big data : 8th international symposium, SocialSec 2022, Xi'an, China, October 16-18, 2022, proceedings / / Xiaofeng Chen, Xinyi Huang, and Mirosław Kutyłowski
Security and privacy in social networks and big data : 8th international symposium, SocialSec 2022, Xi'an, China, October 16-18, 2022, proceedings / / Xiaofeng Chen, Xinyi Huang, and Mirosław Kutyłowski
Autore Chen Xiaofeng
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (372 pages)
Disciplina 005.8
Collana Communications in Computer and Information Science
Soggetto topico Big data - Security measures
Big data - Social aspects
ISBN 981-19-7242-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Cryptography and its Applications -- Improved (t,n)-Threshold Proxy Signature Scheme -- 1 Introduction -- 2 Briefly Review of Liu's Scheme -- 2.1 Initialization Phase -- 2.2 Proxy Key Generation Phase -- 2.3 Proxy Signature Generation Phase -- 2.4 Proxy Signature Verification Phase -- 3 Analysis of Liu's Scheme -- 3.1 Equation Error -- 3.2 Forgery Attack -- 3.3 No Anonymity -- 4 Improved Scheme -- 4.1 System Initialization -- 4.2 Proxy Share and Key Generation -- 4.3 Proxy Signature Generation -- 4.4 Proxy Signature Verification -- 5 Analysis of Improvement Scheme -- 5.1 Scheme Correctness -- 5.2 Scheme Security -- 5.3 Scheme Performance -- 6 Conclusions -- References -- Algorithm Substitution Attacks on Identity-Based Encryption -- 1 Introduction -- 1.1 Algorithm Substitution Attack -- 1.2 Identity-Based Encryption -- 1.3 Our Work -- 2 Preliminaries -- 3 ASA Model of IBE Scheme -- 3.1 Subverting Key Extraction Algorithm -- 3.2 Subverting Encryption Algorithm -- 4 Instantiations -- 4.1 ASA on Waters-IBE Scheme -- 4.2 ASA on BB-IBE Scheme -- 5 Conclusion -- References -- Authenticated Continuous Top-k Spatial Keyword Search on Dynamic Objects -- 1 Introduction -- 2 Related Work -- 2.1 Static Query Authentication -- 2.2 Moving Query Authentication -- 3 Preliminaries -- 3.1 Similarity Measurement -- 3.2 Safe Zone -- 3.3 Authentication Techniques -- 4 Problem Formulation -- 4.1 System Model -- 4.2 Threat Model -- 4.3 Problem Definition -- 4.4 Design Goals -- 5 Proposed Solution -- 5.1 Overview -- 5.2 Authenticated Continuous Top-k Spatial Keyword Search on Dynamic Objects Schemes -- 6 Security Analysis -- 7 Performance Evaluation -- 8 Conclusion -- References -- Efficient Attribute-Based Proxy Re-encryption for Secure Deduplication -- 1 Introduction -- 1.1 Contributions.
2 System Model and Security Model -- 2.1 System Model -- 2.2 Security Model -- 3 The Formal of Definition of the Basic Scheme -- 3.1 Algorithm Definition -- 3.2 The Constructions of the Basic Scheme -- 4 The Formal of Definition of the Improved Scheme -- 4.1 System Model -- 4.2 Algorithm Definition -- 5 The Constructions of the Improved Scheme -- 6 Secure Analysis -- 7 Performance Analysis and Evaluation -- 7.1 Performance Analysis -- 7.2 Performance Evaluation -- 8 Conclusion -- References -- A Secure Word Vector Training Scheme Based on Inner-Product Functional Encryption -- 1 Introduction -- 2 Problem Statement -- 2.1 Backgrounds -- 3 Our Proposed Secure Word Training Protocol -- 3.1 Initialization -- 3.2 Privacy-Preserving Training Protocol -- 4 Theoretical Analysis -- 4.1 Security Analysis -- 4.2 Performance -- 5 Experimental Analysis -- 5.1 Accuracy -- 5.2 Efficiency -- 6 Conclusion and Future Work -- References -- D2D Authentication Scheme for IoT-enabled Smart Home -- 1 Introduction -- 1.1 Our Contributions -- 1.2 Related Work -- 2 Preliminaries -- 2.1 Bilinear Pairing -- 2.2 Complexity Assumption -- 3 System and Security Models -- 3.1 System Model -- 3.2 Security Model -- 4 Main Idea -- 4.1 Overview -- 4.2 Registration Phase -- 4.3 Authentication Phase -- 4.4 Session Key Generation Phase -- 5 Security Analysis -- 5.1 Correctness -- 5.2 Security -- 6 Performance Analysis -- 7 Conclusion -- References -- Inner Product Encryption from Middle-Product Learning with Errors -- 1 Introduction -- 1.1 Background -- 1.2 Our Contributions -- 2 Preliminaries -- 2.1 Notations -- 2.2 Discrete Gaussian Distribution -- 2.3 MP-LWE -- 2.4 Leftover Hash Lemma -- 2.5 Inner Product Encryption -- 3 Public-Key Encryption from MP-LWE -- 3.1 The Correctness and Security -- 3.2 Linear Homomorphism -- 4 Sel-IND-CPA-Secure Inner Product Encryption -- 5 Conclusion.
A Appendix -- A.1 Proof of Theorem 2 -- References -- Network Security and Privacy Protection -- Publicly Verifiable Private Set Intersection from Homomorphic Encryption -- 1 Introduction -- 1.1 Our Contributions -- 1.2 Technical Overview -- 1.3 Related Work -- 1.4 Roadmap -- 2 Preliminaries -- 2.1 Fully Homomorphic Encryption -- 2.2 Publicly Verifiable Computation -- 2.3 Fiore et al.'s Homomorphic Hash Function -- 2.4 Security in the Presence of Malicious Adversaries -- 3 Publicly Verifiable Inner Product Computation on Encrypted Data -- 3.1 Fiore et al.'s Hash Function for RNS Representation -- 3.2 Publicly Verifiable Inner Product Computation -- 4 Publicly Verifiable PSI from Homomorphic Encryption -- 4.1 The Full Construction -- 4.2 Security Analysis -- 4.3 Efficiency Analysis -- 5 Performance Evaluation -- 6 Conclusions -- A Fiore et al.'s Hash Function for RNS Representation -- References -- Secure Asynchronous Federated Learning for Edge Computing Devices -- 1 Introduction -- 2 Framework -- 2.1 System Environment -- 2.2 Aggregation -- 3 Performance Evaluation -- 3.1 Performance of Asynchronous Training -- 3.2 Performance of WASecAgg -- 4 Security Analysis -- 5 Conclusion -- References -- FedBC: An Efficient and Privacy-Preserving Federated Consensus Scheme -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation -- 3.1 System Model -- 3.2 Threat Model -- 3.3 Design Goals -- 4 Preliminaries -- 4.1 Notations -- 4.2 Practical Byzantine Fault Tolerance (PBFT) -- 4.3 DBSCAN Algorithm -- 5 Proposed Scheme -- 5.1 System Initialization -- 5.2 Model Security Consensus -- 6 Security Analysis -- 7 Performance Evaluation -- 7.1 Experiment Setup -- 7.2 Experiment Results -- 8 Conclusion -- References -- A Secure and Privacy-Preserving Authentication Scheme in IoMT -- 1 Introduction -- 2 Related Work -- 3 System and Security -- 3.1 System Architecture.
4 Our Proposed Scheme -- 4.1 Initialization Phase -- 4.2 Registration Phase -- 4.3 Update Key Phase -- 4.4 User-to-Sensors Authentication Phase -- 4.5 Sensors-to-Server Authentication Phase -- 4.6 Dynamic Revocation Phase -- 5 Security Analysis -- 6 Performance Analysis -- 6.1 Security Features -- 6.2 Computation Cost -- 6.3 Communication Cost -- 7 Conclusion -- References -- Secure and Efficient k-Nearest Neighbor Query with Privacy-Preserving Authentication -- 1 Introduction -- 1.1 Contributions -- 1.2 Related Works -- 1.3 Paper Organization -- 2 Preliminaries -- 3 System Framework -- 3.1 System Model -- 3.2 Security Assumptions and Security Goals -- 3.3 Secure Sub-protocols -- 3.4 The Main Idea of kNN Query -- 4 Secure Index Structure -- 4.1 Secure Two-Level Partition Index -- 5 Pre-read Protocol -- 5.1 Type-1: Secure Group Read Based on E(N) -- 5.2 Type-2: Secure Group Read Based on E(id) -- 5.3 Type-3: Secure Record Read Based on E(id) -- 6 Secure kNN Schemes S-kQ and SV-kQ -- 6.1 Secure kNN Scheme S-kQ -- 6.2 Verifiable Scheme Based on LT -- 6.3 Secure and Verifiable kNN Scheme SV-kQ -- 6.4 The Optimized Ciphertext Generation -- 7 Performance Evaluation -- 7.1 Evaluation of Different SkNN Schemes -- 7.2 Evaluation of Verification Process -- 8 Conclusion -- A Indistinguishable Read Operation -- B Complexity Analysis -- C Security Analysis -- D Evaluation of Read Protocol and Other Data Setting -- References -- A Network Security Situation Assessment Method Based on Multi-attention Mechanism and HHO-ResNeXt -- 1 Introduction -- 2 Related Work -- 3 Convolutional Neural Network (CNN) -- 3.1 The Structure of the ResNeXt Block -- 3.2 Efficient Channel Attention (ECA) Module -- 3.3 Contextual Transformer (CoT) Block -- 4 Harris Hawks Optimization (HHO) -- 4.1 Eploration Phase -- 4.2 Transition from Exploration to Exploitation -- 4.3 Exploitation Phase.
5 Construction of Network Model Based on Multi-attention Mechanism and HHO-ResNeXt -- 5.1 The ECA-ResNeXt Block -- 5.2 The CoTNeXt Block -- 5.3 The Complete Structure of the Model in This Paper -- 6 Experiments -- 6.1 Dataset Description -- 6.2 UNSW-NB15 Dataset Preprocessing -- 6.3 Selected Hyperparameters -- 6.4 Experiment Results -- 7 Conclusion -- References -- A Privacy-Preserving Federated Learning with Mutual Verification on Vector Spaces -- 1 Introduction -- 2 Related Work -- 3 System Model and Design Goal -- 3.1 System Model -- 3.2 Design Goal -- 4 Our Scheme -- 4.1 System Initialization -- 4.2 Local Training -- 4.3 Gradients Verification -- 4.4 Gradients Aggregation -- 4.5 Subkeys Distribution -- 4.6 Recovery of the Aggregation Result -- 5 Security Analysis -- 5.1 Privacy -- 5.2 Verification -- 6 Conclusion -- References -- Data Detection -- Patch-Based Backdoors Detection and Mitigation with Feature Masking -- 1 Introduction -- 2 Related Work -- 2.1 Backdoor Attack -- 2.2 Backdoor Defense -- 3 Abnormal Feature Distribution and Detection and Defense -- 3.1 Backdoors Detection and Defense Based on Feature Cells Importance -- 3.2 Backdoors Detection Based on Gradient Method -- 4 Experimental Evaluations -- 4.1 Backdoors Detection and Mitigation Against Trojan Attack -- 4.2 Backdoors Mitigation and Defense Against Badnets Attack -- 4.3 Further Exploration of the Proposed Schemes -- 5 Conclusion -- References -- Detection and Defense Against DDoS Attack on SDN Controller Based on Feature Selection -- 1 Introduction -- 2 Background -- 2.1 Software Defined Network -- 2.2 OpenFlow -- 3 Related Work -- 4 The Designed Scheme -- 4.1 Data Process Module -- 4.2 Attack Detection Module -- 4.3 Attack Defense Module -- 5 Experiments and Evaluation -- 5.1 Experiment -- 5.2 Performance Metrics -- 6 Conclusion -- References.
Commodity-Tra: A Traceable Transaction Scheme Based on FISCO BCOS.
Record Nr. UNISA-996495563803316
Chen Xiaofeng  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Security and Privacy in Social Networks and Big Data : 8th International Symposium, SocialSec 2022, Xi'an, China, October 16–18, 2022, Proceedings / / edited by Xiaofeng Chen, Xinyi Huang, Mirosław Kutyłowski
Security and Privacy in Social Networks and Big Data : 8th International Symposium, SocialSec 2022, Xi'an, China, October 16–18, 2022, Proceedings / / edited by Xiaofeng Chen, Xinyi Huang, Mirosław Kutyłowski
Autore Chen Xiaofeng
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (372 pages)
Disciplina 005.8
Collana Communications in Computer and Information Science
Soggetto topico Computer networks - Security measures
Application software
Software engineering
Cryptography
Data encryption (Computer science)
Data protection
Computer networks
Mobile and Network Security
Computer and Information Systems Applications
Software Engineering
Cryptology
Data and Information Security
Computer Communication Networks
ISBN 981-19-7242-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cryptography and its applications -- Improved (t,n)-Threshold Proxy Signature Scheme -- Algorithm Substitution Attacks on Identity-Based Encryption -- Authenticated Continuous Top-k Spatial Keyword Search on Dynamic Objects -- Efficient Attribute-based Proxy Re-encryption for Secure Deduplication -- A Secure Word Vector Training Scheme Based on Inner-Product Functional Encryption -- D2D Authentication Scheme for IoT-enabled Smart Home -- Inner Product Encryption from Middle-Product Learning with Errors -- Network security and privacy protection -- Publicly Verifiable Private Set Intersection from Homomorphic Encryption -- Secure Asynchronous Federated Learning for Edge Computing Devices -- FedBC: An Efficient and Privacy-preserving Federated Consensus Scheme -- A Secure and Privacy-preserving Authentication Scheme in IoMT -- Secure and Efficient k-Nearest Neighbor Query with Privacy-Preserving Authentication -- A Network Security Situation Assessment Method Based on Multi-attention Mechanism and HHO-ResNeXt -- A Privacy-Preserving Federated Learning with Mutual Verification on Vector Spaces -- Data detection -- Patch-based Backdoors Detection and Mitigation with Feature Masking -- Detection and Defense Against DDoS Attack on SDN Controller Based on Feature Selection -- Commodity-Tra: A Traceable Transaction Scheme Based on FISCO BCOS -- A Defect Heterogeneous Risk Assessment Method with Misclassification Cost -- Squeeze-Loss: A Utility-Free Defense Against Membership Inference Attacks -- Blockchain and its applications -- Improved WAVE Signature and Apply to Post-Quantum Blockchain -- Secure Government Data Sharing Based on Blockchain and Attribute-Based Encryption -- Secure Data Storage Scheme of Judicial System based on Blockchain -- Judicial Evidence Storage Scheme Based on Smart Contract.
Record Nr. UNINA-9910616393303321
Chen Xiaofeng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui