A non-equilibrium statistical mechanics [[electronic resource] ] : without the assumption of molecular chaos / / Tian-Quan Chen |
Autore | Chen Tian-Quan |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2003 |
Descrizione fisica | 1 online resource (xvi, 420 p.) |
Disciplina | 530.13 |
Soggetto topico |
Statistical mechanics
Sturm-Liouville equation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-93562-X
9786611935627 981-279-519-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction. 1.1. Historical background. 1.2. Outline of the book -- 2. H-functional. 2.1. Hydrodynamic random fields. 2.2. H-Functional -- 3. H-functional equation. 3.1. Derivation of H-functional equation. 3.2. H-functional equation. 3.3. Balance equations. 3.4. Reformulation -- 4. K-Functional. 4.1. Definition of K-functional -- 5. Some useful formulas. 5.1. Some useful formulas. 5.2. A remark on H-functional equation -- 6. Turbulent Gibbs distributions. 6.1. Asymptotic analysis for Liouville equation. 6.2. Turbulent Gibbs distributions. 6.3. Gibbs mean -- 7. Euler K-functional equation. 7.1. Expressions of B[symbol] and B[symbol]. 7.2. Euler K-functional equation. 7.3. Reformulation. 7.4. Special cases. 7.5. Case of deterministic flows -- 8. Functionals and distributions. 8.1. K-functionals and turbulent Gibbs distributions. 8.2. Turbulent Gibbs measures. 8.3. Asymptotic analysis -- 9. Local stationary Liouville equation. 9.1. Gross determinism. 9.2. Temporal part of material derivative of T[symbol]. 9.3 Spatial part of material derivative of T[symbol]. 9.4. Stationary local Liouville equation -- 10. Second order approximate solutions. 10.1. Case of Reynolds-Gibbs distributions. 10.2. A poly-spherical coordinate system. 10.3. A solution to the equation (10.24)[symbol]. 10.4. A solution to the equation (10.24)[symbol]. 10.5. A solution to the equation (10.24)[symbol]. 10.6. A solution to the equation (10.24)[symbol]. 10.7. A solution to the equation (10.24)[symbol]. 10.8. A solution to the equation (10.24)[symbol]. 10.9. Equipartition of energy -- 11. A finer K-functional equation. 11.1. The expression of B[symbol]. 11.2. The contribution of G[symbol] to B[symbol]. 11.3. The contribution of G[symbol] to B[symbol]. 11.4. The contribution of G[symbol] to B[symbol]. 11.5. The expression of B[symbol]. 11.6. The contribution of G[symbol] to B[symbol]. 11.7. The contribution of G[symbol] to B[symbol]. 11.8. The contribution of G[symbol] to B[symbol]. 11.9. The contribution of G[symbol] to B[symbol]. 11.10. The contribution of G[symbol] to B[symbol]. 11.11. The contribution of G[symbol] to B[symbol]. 11.12. A finer K-functional equation -- 12. Conclusions. 12.1. A view on turbulence. 12.2. Features of the finer K-functional equation. 12.3. Justification of the finer K-functional equation. 12.4. Open problems. |
Record Nr. | UNINA-9910454294703321 |
Chen Tian-Quan | ||
River Edge, N.J., : World Scientific, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A non-equilibrium statistical mechanics [[electronic resource] ] : without the assumption of molecular chaos / / Tian-Quan Chen |
Autore | Chen Tian-Quan |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2003 |
Descrizione fisica | 1 online resource (xvi, 420 p.) |
Disciplina | 530.13 |
Soggetto topico |
Statistical mechanics
Sturm-Liouville equation |
ISBN |
1-281-93562-X
9786611935627 981-279-519-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction. 1.1. Historical background. 1.2. Outline of the book -- 2. H-functional. 2.1. Hydrodynamic random fields. 2.2. H-Functional -- 3. H-functional equation. 3.1. Derivation of H-functional equation. 3.2. H-functional equation. 3.3. Balance equations. 3.4. Reformulation -- 4. K-Functional. 4.1. Definition of K-functional -- 5. Some useful formulas. 5.1. Some useful formulas. 5.2. A remark on H-functional equation -- 6. Turbulent Gibbs distributions. 6.1. Asymptotic analysis for Liouville equation. 6.2. Turbulent Gibbs distributions. 6.3. Gibbs mean -- 7. Euler K-functional equation. 7.1. Expressions of B[symbol] and B[symbol]. 7.2. Euler K-functional equation. 7.3. Reformulation. 7.4. Special cases. 7.5. Case of deterministic flows -- 8. Functionals and distributions. 8.1. K-functionals and turbulent Gibbs distributions. 8.2. Turbulent Gibbs measures. 8.3. Asymptotic analysis -- 9. Local stationary Liouville equation. 9.1. Gross determinism. 9.2. Temporal part of material derivative of T[symbol]. 9.3 Spatial part of material derivative of T[symbol]. 9.4. Stationary local Liouville equation -- 10. Second order approximate solutions. 10.1. Case of Reynolds-Gibbs distributions. 10.2. A poly-spherical coordinate system. 10.3. A solution to the equation (10.24)[symbol]. 10.4. A solution to the equation (10.24)[symbol]. 10.5. A solution to the equation (10.24)[symbol]. 10.6. A solution to the equation (10.24)[symbol]. 10.7. A solution to the equation (10.24)[symbol]. 10.8. A solution to the equation (10.24)[symbol]. 10.9. Equipartition of energy -- 11. A finer K-functional equation. 11.1. The expression of B[symbol]. 11.2. The contribution of G[symbol] to B[symbol]. 11.3. The contribution of G[symbol] to B[symbol]. 11.4. The contribution of G[symbol] to B[symbol]. 11.5. The expression of B[symbol]. 11.6. The contribution of G[symbol] to B[symbol]. 11.7. The contribution of G[symbol] to B[symbol]. 11.8. The contribution of G[symbol] to B[symbol]. 11.9. The contribution of G[symbol] to B[symbol]. 11.10. The contribution of G[symbol] to B[symbol]. 11.11. The contribution of G[symbol] to B[symbol]. 11.12. A finer K-functional equation -- 12. Conclusions. 12.1. A view on turbulence. 12.2. Features of the finer K-functional equation. 12.3. Justification of the finer K-functional equation. 12.4. Open problems. |
Record Nr. | UNINA-9910782116003321 |
Chen Tian-Quan | ||
River Edge, N.J., : World Scientific, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A non-equilibrium statistical mechanics : without the assumption of molecular chaos / / Tian-Quan Chen |
Autore | Chen Tian-Quan |
Edizione | [1st ed.] |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2003 |
Descrizione fisica | 1 online resource (xvi, 420 p.) |
Disciplina | 530.13 |
Soggetto topico |
Statistical mechanics
Sturm-Liouville equation |
ISBN |
1-281-93562-X
9786611935627 981-279-519-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction. 1.1. Historical background. 1.2. Outline of the book -- 2. H-functional. 2.1. Hydrodynamic random fields. 2.2. H-Functional -- 3. H-functional equation. 3.1. Derivation of H-functional equation. 3.2. H-functional equation. 3.3. Balance equations. 3.4. Reformulation -- 4. K-Functional. 4.1. Definition of K-functional -- 5. Some useful formulas. 5.1. Some useful formulas. 5.2. A remark on H-functional equation -- 6. Turbulent Gibbs distributions. 6.1. Asymptotic analysis for Liouville equation. 6.2. Turbulent Gibbs distributions. 6.3. Gibbs mean -- 7. Euler K-functional equation. 7.1. Expressions of B[symbol] and B[symbol]. 7.2. Euler K-functional equation. 7.3. Reformulation. 7.4. Special cases. 7.5. Case of deterministic flows -- 8. Functionals and distributions. 8.1. K-functionals and turbulent Gibbs distributions. 8.2. Turbulent Gibbs measures. 8.3. Asymptotic analysis -- 9. Local stationary Liouville equation. 9.1. Gross determinism. 9.2. Temporal part of material derivative of T[symbol]. 9.3 Spatial part of material derivative of T[symbol]. 9.4. Stationary local Liouville equation -- 10. Second order approximate solutions. 10.1. Case of Reynolds-Gibbs distributions. 10.2. A poly-spherical coordinate system. 10.3. A solution to the equation (10.24)[symbol]. 10.4. A solution to the equation (10.24)[symbol]. 10.5. A solution to the equation (10.24)[symbol]. 10.6. A solution to the equation (10.24)[symbol]. 10.7. A solution to the equation (10.24)[symbol]. 10.8. A solution to the equation (10.24)[symbol]. 10.9. Equipartition of energy -- 11. A finer K-functional equation. 11.1. The expression of B[symbol]. 11.2. The contribution of G[symbol] to B[symbol]. 11.3. The contribution of G[symbol] to B[symbol]. 11.4. The contribution of G[symbol] to B[symbol]. 11.5. The expression of B[symbol]. 11.6. The contribution of G[symbol] to B[symbol]. 11.7. The contribution of G[symbol] to B[symbol]. 11.8. The contribution of G[symbol] to B[symbol]. 11.9. The contribution of G[symbol] to B[symbol]. 11.10. The contribution of G[symbol] to B[symbol]. 11.11. The contribution of G[symbol] to B[symbol]. 11.12. A finer K-functional equation -- 12. Conclusions. 12.1. A view on turbulence. 12.2. Features of the finer K-functional equation. 12.3. Justification of the finer K-functional equation. 12.4. Open problems. |
Record Nr. | UNINA-9910809092803321 |
Chen Tian-Quan | ||
River Edge, N.J., : World Scientific, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|