Vai al contenuto principale della pagina

Towards Next Generation Energy Storage Technologies : From Fundamentals to Commercial Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chen Minghua Visualizza persona
Titolo: Towards Next Generation Energy Storage Technologies : From Fundamentals to Commercial Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (477 pages)
Soggetto topico: Energy storage
Batteries (Ordnance)
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- Chapter 2 Fundamentals of Electrochemical Energy Storage Technologies -- 2.1 Typical Battery Patterns and Corresponding Functions -- 2.1.1 Cathode -- 2.1.2 Anode -- 2.1.3 Electrolyte -- 2.2 Operating Mechanism of Devices -- 2.2.1 Potential and Thermodynamics -- 2.2.2 Kinetics of Electrode Reactions -- 2.3 Critical Parameters and Design Proposal -- 2.4 Common Investigation Technologies -- 2.4.1 Structural Characterizations -- 2.4.2 Electrochemical Measurements -- 2.4.3 Energy Storage Mechanism Investigations -- 2.5 Common Design Strategies for High‐Performance Electrode Materials -- References -- Chapter 3 Lithium‐Ion Batteries -- 3.1 Brief Introduction -- 3.2 Cathode Materials -- 3.2.1 LiFePO4 -- 3.2.2 LiNixCoyMnzO2 -- 3.2.3 Spinel (LiM2O4 -- M = Mn, Ni) -- 3.2.4 Organic Cathodes -- 3.3 Anode Materials -- 3.3.1 Graphite -- 3.3.2 Silicon‐Based Materials -- 3.3.3 Lithium Metal -- 3.3.4 Other Anode Materials -- 3.4 Application and Critical Challenges -- 3.4.1 Trends in LIBs for Applications -- 3.4.2 Recycling of LIBs -- 3.4.3 Critical Challenges -- References -- Chapter 4 Sodium‐Ion Batteries -- 4.1 Introduction -- 4.2 Energy Storage Mechanism -- 4.3 Cathode Materials -- 4.3.1 Layered Oxides -- 4.3.1.1 Classification of Layered Structures -- 4.3.1.2 Challenges -- 4.3.1.3 Strategies for Layered Oxide Materials for SIBs -- 4.3.2 Polyanion‐Type Materials -- 4.3.2.1 Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.2 Pyrophosphate‐Based Polyanion Electrode Materials -- 4.3.2.3 Fluoride‐Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.4 Mixed‐Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.5 Sulfate‐Based Polyanion Electrode Materials -- 4.3.2.6 Silicate‐Based Polyanion Electrode Materials -- 4.4 Anode Materials.
4.4.1 Alloy‐Type Anode Materials -- 4.4.2 Intercalation‐Type Anode Materials -- 4.4.3 Conversion‐/Conversion‐Alloying‐Type Anode Materials -- 4.4.4 Organic‐Type Anode Materials -- 4.5 Electrolyte -- 4.5.1 Liquid Electrolytes -- 4.5.2 Solid Electrolytes -- 4.6 Sodium‐Ion Batteries at Extreme Temperatures -- 4.7 Other Na‐Based Technologies -- 4.7.1 Sodium Metal Batteries (SMBs) -- 4.7.2 Sodium Metal Batteries: S, Se, and SSe Systems -- 4.8 Summary and Outlook -- References -- Chapter 5 All‐Solid‐State Batteries -- 5.1 Introduction -- 5.2 Ion Transport Mechanism -- 5.2.1 Ion Transport of Inorganic Solid Electrolytes -- 5.2.2 Ion Transport in Solid Polymer Electrolytes -- 5.2.3 Ion Transport of Complex Solid Electrolytes -- 5.3 Key Performance Parameters -- 5.3.1 Ionic Conductivity -- 5.3.2 Li+ Transference Number -- 5.3.3 Electrochemical Stability Window -- 5.3.4 Mechanical Property -- 5.3.5 Thermal Property -- 5.3.6 Electrolyte Uptake -- 5.4 Classification of Solid Electrolytes -- 5.4.1 Inorganic Solid Electrolytes -- 5.4.1.1 Oxide Solid Electrolytes -- 5.4.1.2 Sulfide Solid Electrolytes -- 5.4.1.3 Halide Solid Electrolytes -- 5.4.2 Polymer Electrolytes and Composite Electrolytes -- 5.4.2.1 Solid Polymer and Composite Electrolytes -- 5.4.2.2 Gel Polymer Electrolytes -- 5.4.3 Performance Requirements and Design Strategies -- 5.5 Practical Problems and Critical Challenges -- 5.5.1 Slow Li+ Transportation -- 5.5.2 Chemical and Electrochemical Instabilities -- 5.5.2.1 Chemical and Electrochemical Instability of SPEs -- 5.5.2.2 Chemical and Electrochemical Instability of Solid Oxide Electrolytes -- 5.5.2.3 Chemical Instability and Electrochemical Instability of Solid Sulfide Electrolytes -- 5.5.3 Ineffective Facial Contact -- 5.5.4 Solid‐State Composite Cathodes -- 5.5.5 High Manufacturing Costs -- 5.6 Practical Advances in Electric Vehicles and Other Areas.
References -- Chapter 6 Lithium-Sulfur Battery -- 6.1 Fundamental Understanding of Li‐S Batteries -- 6.1.1 Reaction Mechanism -- 6.1.2 Challenges -- 6.2 Sulfur Cathode -- 6.2.1 Sulfur Cathode -- 6.2.1.1 S8 Cathode -- 6.2.1.2 Li2S Cathode -- 6.2.1.3 SPAN Cathode -- 6.2.2 Typical Strategy -- 6.2.2.1 Physical Confinement -- 6.2.2.2 Chemical Adsorption -- 6.2.2.3 Catalytic Conversion -- 6.3 Electrolyte -- 6.3.1 Liquid Electrolyte -- 6.3.1.1 Solvent -- 6.3.1.2 Salt -- 6.3.1.3 Additive -- 6.3.2 Solid Electrolytes -- 6.3.2.1 Inorganic Solid Electrolytes -- 6.3.2.2 Solid Polymer Electrolytes -- 6.4 Anode -- 6.5 Li‐S Pouch Cell Analysis -- 6.5.1 Limitations of Coin Cells in Li‐S Research -- 6.5.2 The Main Difference Between Pouch Cell and Coin Cell -- 6.5.3 Key Challenges and Solutions for Pouch Cells -- 6.5.3.1 Cathode -- 6.5.3.2 Electrolyte -- 6.5.3.3 Separator -- 6.5.3.4 Anode -- 6.5.4 Application Prospect Analysis -- References -- Chapter 7 Aqueous Multivalent Metal Ion Batteries: Fundamental Mechanism and Applications -- 7.1 Introduction -- 7.2 Classification Based on Energy Storage Mechanism -- 7.2.1 Insertion/Extraction Mechanism of Ions -- 7.2.2 Chemical Conversion Mechanism -- 7.3 Highly Stable and Energetic Cathodes -- 7.3.1 Mn‐Based Materials -- 7.3.2 V‐Based Materials -- 7.3.3 Organic Compounds -- 7.3.4 Prussian Blue Analogues -- 7.3.5 Other Cathodes -- 7.4 Strategies for Dendrite‐Free Metal Anodes -- 7.4.1 Optimization Strategy of Zn Anodes -- 7.4.2 Anode Materials of Mg‐Ion Batteries -- 7.5 Strategies for Designing Electrolytes -- 7.5.1 Liquid Electrolytes -- 7.5.1.1 Aqueous Liquid Electrolytes -- 7.5.1.2 Ionic Liquid Electrolytes -- 7.5.1.3 Organic Liquid Electrolytes -- 7.5.2 Solid‐State Electrolytes -- 7.5.3 Gel Electrolytes -- 7.6 Design Strategies for Extreme Temperatures -- 7.6.1 Mechanisms and Challenges at Extreme Temperatures.
7.6.2 Challenges of AZIBs at Low Temperatures -- 7.6.3 Challenges of AZIBs at High Temperatures -- 7.6.4 Mechanism and Strategies of AZIBs at Low Temperatures -- 7.7 Practical Progress in Grid‐Scale Energy Storage and Wearable Devices -- References -- Chapter 8 Li‐O2 and Li‐CO2 Batteries -- 8.1 Introduction -- 8.2 The Mechanism for Li‐O2 and Li‐CO2 Batteries -- 8.2.1 Classification of Li‐O2 Batteries -- 8.2.1.1 Nonaqueous Electrolyte Li‐O2 Batteries -- 8.2.1.2 Aqueous Electrolyte Li‐O2 Batteries -- 8.2.1.3 All‐Solid‐State Li‐O2 Battery -- 8.2.1.4 Organic-Aqueous Hybrid Electrolyte Li‐O2 Batteries -- 8.2.2 Reaction Mechanism of Charge and Discharge Process of Organic Li‐O2 Batteries -- 8.2.2.1 Discharge Reaction (ORR) Mechanism of Organic Li‐O2 Batteries -- 8.2.2.2 The Charging Reaction (OER) Mechanism of Organic Li‐O2 Batteries -- 8.2.3 The Mechanism of Li‐CO2 Batteries -- 8.2.3.1 CO2 ↔ Li2CO3 + C Reaction Mechanism -- 8.2.3.2 CO2 ↔ Li2C2O4 Reaction Mechanism -- 8.2.3.3 CO2↔CO Reaction Mechanism -- 8.3 Design Strategy of Cathode Materials -- 8.3.1 Cathode Structural Design -- 8.3.2 Selection of Efficient Catalysts -- 8.3.2.1 Carbon Materials and Their Derivatives -- 8.3.2.2 Precious Metals and Precious Metal Oxides -- 8.3.2.3 Non‐precious Metal‐Based Catalysts -- 8.3.2.4 Metal‐Organic Frames and Their Derivatives -- 8.3.2.5 Soluble Catalysts -- 8.4 Electrolyte and Electrolyte Stability -- 8.4.1 Nonaqueous Aprotic Electrolyte System -- 8.4.1.1 Variety of Solvents -- 8.4.1.2 Compatibility of Lithium Salts -- 8.4.2 Aqueous Aprotic Electrolyte System -- 8.4.3 Solid‐State Electrolyte System -- 8.5 Stable Anode/Electrolyte Interface Construction -- 8.6 Application Potential Analysis -- References -- Chapter 9 Supercapacitors -- 9.1 Brief Introduction -- 9.2 Energy Storage Mechanism -- 9.2.1 EDLCs -- 9.2.2 Pseudocapacitors.
9.2.2.1 Conductive‐Polymer‐Based Pseudocapacitors -- 9.2.2.2 Metal Compound Pseudocapacitors -- 9.3 Electrode Materials -- 9.3.1 Activated‐Carbon‐Based Electrode -- 9.3.1.1 Activation of AC -- 9.3.1.2 Development of AC for Supercapacitors -- 9.3.2 Conductive‐Polymer‐Based Electrodes -- 9.3.2.1 Preparation of CPs -- 9.3.2.2 Development of CPs for Supercapacitors -- 9.3.3 Metal Compounds -- 9.3.3.1 Preparation of Metal Compounds -- 9.3.3.2 Development of Metal Compounds in Supercapacitors -- 9.4 Electrolytes -- 9.4.1 Liquid Electrolytes -- 9.4.2 (Quasi)‐Solid‐State Electrolytes -- 9.4.3 Optimizing the Electrolyte Properties -- 9.4.3.1 Adjusting pH Level -- 9.4.3.2 Introducing Redox Mediators -- 9.4.3.3 Constructing "Water‐in‐Salt" Electrolytes -- 9.5 Conclusion -- References -- Chapter 10 Battery-Supercapacitor Hybrid Devices -- 10.1 Introduction -- 10.2 Classification Based on Energy Storage Mechanism -- 10.2.1 The Basic Classifications of LICs -- 10.2.1.1 Battery Cathode and Capacitor Anode -- 10.2.1.2 Capacitive Cathode and Battery Anode -- 10.2.1.3 Capacitive Cathode and Pre‐lithium Battery Anode -- 10.2.1.4 Hybrid Cathode and Pre‐lithium Battery Type Anode -- 10.2.2 The Energy Storage Mechanism of LICs -- 10.3 Key Scientific Problems -- 10.3.1 Electrode Design for LICs -- 10.3.2 Electrolyte Design for LICs -- 10.3.3 Pre‐lithium Technologies -- 10.3.4 Capacity Ratio of Anode and Cathode -- 10.3.5 Conductive Electron/Ion Networks -- 10.3.6 Dense, Continuous, and Robust SEI -- 10.4 Electrode Materials -- 10.4.1 Lithium‐Ion Capacitor Positive Electrode -- 10.4.1.1 Carbon‐Based Materials -- 10.4.1.2 Metal Oxide Materials -- 10.4.1.3 MXene‐Based Materials -- 10.4.2 Lithium‐Ion Supercapacitor Negative Electrodes -- 10.4.2.1 Silicon‐Based Material -- 10.4.2.2 Graphite‐Based Materials -- 10.5 Microgrid Energy Storage -- 10.6 Summary and Perspectives.
References.
Sommario/riassunto: This book, edited by Minghua Chen, explores the development and application of next-generation energy storage technologies. It provides a comprehensive overview of both fundamental and commercial aspects of these technologies, highlighting key components such as cathodes, anodes, and electrolytes. The book covers various types of batteries including lithium-ion, sodium-ion, and metal-ion batteries, as well as discussing hybrid devices and fuel cells. Intended for researchers, engineers, and students in the field of energy technology, the book aims to address the challenges and advancements in energy storage systems, focusing on improving energy efficiency and reducing reliance on non-renewable energy sources.
Titolo autorizzato: Towards Next Generation Energy Storage Technologies  Visualizza cluster
ISBN: 9783527845293
3527845291
9783527845316
3527845313
9783527845309
3527845305
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019194503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui