top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Ginsenosides
Advances in Ginsenosides
Autore Chen Jen-Tsung
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (264 p.)
Soggetto topico Medicine
Soggetto non controllato (20S)G-Rh2
allergy
American ginseng
anti-cancer
anti-diabetic
anti-inflammation
Anxa2
Asian ginseng
bioconversion
bioreactor
biotechnology
biotransformation
cell proliferation
cell suspension
cerebral ischemia and reperfusion injury
clinical trials
complete genome sequence
compound M1
dammarane-type triterpene saponin
EAE
epithelial-mesenchymal transition
ginseng
Ginseng berries
ginsenoside
ginsenoside CK
ginsenoside MT1
ginsenoside Rg3(S)
ginsenosides
gram unit production
hairy root
hepatoprotective
HMGB1
homology modeling
HR-MAS NMR spectroscopy
immune system
inflammation
Lactobacillus ginsenosidimutans
M2 polarization
macrophage
MAPK
molecular docking analysis
molecular interaction
n/a
neurogenesis
neuroprotection
NF-κB
notoginseng leaf triterpenes
novel glycoside hydrolases
ocotillol type ginsenoside epimers
Panax ginseng
Panax quinquefolium L.
Panax sp
pharmacopuncture
polyploidy
polysaccharides
primary metabolite
pro-resolving
protoplast
recombinant enzyme
Rg3
RORγt
safety
stereoselective ADME characteristics
Th17
transglycosylation
UPLC-QTOF/MS
wild ginseng
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557766503321
Chen Jen-Tsung  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics for Plant Research and Crop Breeding
Bioinformatics for Plant Research and Crop Breeding
Autore Chen Jen-Tsung
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (608 pages)
Soggetto topico Plant breeding
Crop improvement
ISBN 9781394209965
1394209967
9781394209941
1394209940
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Bioinformatics as a Powerful Tool to Foster Plant Science Research and Crop Breeding Through Its Involvement in a Multidisciplinary Research Activity -- 1.1 Introduction -- 1.2 Bioinformatics as a Powerful Tool for Big Data Analysis in Plant Science -- 1.3 Role of Bioinformatics in Trait Mapping -- 1.4 Bioinformatics in Molecular Biology -- 1.5 Role of Bioinformatics in Genetic Variation -- 1.6 Bioinformatics in Genome-wide Association Studies (GWAS) -- 1.7 Implication of Bioinformatics in “Omics” -- 1.8 Bioinformatics in Computational Biology and Evolutionary Studies -- 1.9 Role of Bioinformatics in Transcriptomics -- 1.10 Implication of Bioinformatics in Next-generation Sequencing (NGS) Analysis -- 1.11 Implication of Bioinformatics in Metabolomics -- 1.12 Bioinformatics and Epigenetics -- 1.13 Involvement of Bioinformatics in Synthetic Biology -- 1.14 How Can Bioinformatics Promote Plant Biotechnology? -- 1.15 Bioinformatics Use in Biotic and Abiotic Stress Management -- 1.16 Bioinformatics for the Investigation of Plant Resistance to Pathogens -- 1.17 Bioinformatics in Crop Breeding and Improvement -- 1.18 Bioinformatics Impacts on Plant Science -- 1.19 Application of Bioinformatics in Plant Breeding Programs -- 1.20 Conclusion -- References -- Chapter 2 Bioinformatics for Molecular Breeding and Enhanced Crop Performance: Applications and Perspectives -- 2.1 Introduction
Record Nr. UNINA-9911018962903321
Chen Jen-Tsung  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cell Signaling in Model Plants
Cell Signaling in Model Plants
Autore Chen Jen-Tsung
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (278 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato ABA signaling
ABF2
abiotic stress
Arabidopsis
Botrytis cinerea
brassinosteroid signaling cascade
brassinosteroids
calcite
calcium
cAMP
catalytic activity
cellular signalization
CPS
CRISPR/Cas9
crops
cyclic nucleotides-gated channels
DELLA
DELLA/TVHYNP
development
disease resistance
drought
drought tolerance
Dwarf
dwarfism
endocytosis
enzymatic anti-oxidative system
flowering
FLOWERING LOCUS C
GA
GA signaling
GA20OX2
gasotransmitter
gene cloning
GSK3-like kinases
herbivore
Hydrogen sulfide
ion channels
iprodione
juvenility
kinase
Malus domestica
Medicago truncatula
metabolism
microRNAs
miPEPs
MNP1
mutant
n/a
peptides
phytohormone
plant biotic stress
plant defense
plant hormone
plant innate immunity
plant signalling
priming
protein phosphatases
protein-protein interaction
reactive oxygen species
reactive oxygen species (ROS)
receptor
receptor-like kinases
Rosaceae
S-sulfhydration
salinity
selenium (Se)
somatic embryogenesis receptor-like kinases
stress
stress adaptation
stress memory
tobacco
tomato
transcriptome analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557518203321
Chen Jen-Tsung  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ethnopharmacology and Drug Discovery for COVID-19: Anti-SARS-CoV-2 Agents from Herbal Medicines and Natural Products / / edited by Jen-Tsung Chen
Ethnopharmacology and Drug Discovery for COVID-19: Anti-SARS-CoV-2 Agents from Herbal Medicines and Natural Products / / edited by Jen-Tsung Chen
Autore Chen Jen-Tsung
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (591 pages)
Disciplina 614.5924144
Soggetto topico Pharmacology
Natural products
Nanobiotechnology
Bioinformatics
Diseases - Causes and theories of causation
Molecular biology
Natural Products
Pathogenesis
Molecular Biology
ISBN 981-9936-64-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. COVID-19: An overview of virology, mutations, pathology, epidemiology, diagnosis, preventions and treatments -- 2. The recent development of therapeutic strategies against COVID-19 -- 3. Plant immunoenhancers: Promising ethnopharmacological candidates for anti-SARS-CoV-2 activity -- 4. Herbal formulations in fighting against the SARS-CoV-2 infection -- 5. Rejuvenation of traditional medicine in the 21st century against SARS-CoV-2 -- 6. Traditional herbal medicines and their active constituents in combating SARS-CoV-2 infection -- 7. Antiviral phytocompounds against animal-to-human transmittable SARS-CoV-2 -- 8. Plants-derived bioactive compounds as potential ACE-2 inhibitors against SARS-CoV-2 infection -- 9. Insights into in silico methods to explore plant bioactive substances in combating SARS-CoV-2 -- 10. Dietary plants, spices and fruits in curbing SARS-CoV-2 virulence -- 11. Therapeutic potential of selected medicinal plants for neurological disorders after the infection of COVID-19 -- 12. Glycyrrhizae Radix et Rhizoma (Gan Cao) for the management of COVID-19 -- 13. COVID-19-induced kidney disease: Ethnopharmacological intervention to ameliorate kidney damage and improve kidney function -- 14. Phytochemicals and nutraceuticals targeting SARS-CoV-2: An in silico analysis -- 15. Therapeutic and prophylactic effects of plant derivatives against SARS-CoV-2 -- 16. Therapeutic potential of essential oils against SARS-CoV-2 infection -- 17. Antiviral properties of South Indian plants against SARS-CoV-2 -- 18. Immune-boosting plants used in Turkish folk medicine and their potential against COVID-19 -- 19. A comparison study of medicinal plants used against SARS-CoV-2 and those recommended against malaria in Africa -- 20. Exploring the potential antiviral properties of Nigella sativa L. against SARS-CoV-2: Mechanisms and prospects -- .
Record Nr. UNINA-9910746084103321
Chen Jen-Tsung  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genome and Epigenome Editing for Stress-Tolerant Crops
Genome and Epigenome Editing for Stress-Tolerant Crops
Autore Chen Jen-Tsung
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (0 pages)
Disciplina 581.3/5
Soggetto topico Plant genetics
Plants - Effect of stress on
Epigenetics
ISBN 1-394-28004-1
1-394-28003-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911020204303321
Chen Jen-Tsung  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Plant Biology
Machine Learning for Plant Biology
Autore Chen Jen-Tsung
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2026
Descrizione fisica 1 online resource (371 pages)
ISBN 1-394-32963-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Table of Contents -- Preface -- List of Contributors -- Chapter 1: Edge-Based Machine Learning for Computer Vision in Smart Plant Biology Imaging -- 1.1 Introduction -- 1.2 Electronic Devices for Embedded AI-driven Computer Vision -- 1.3 Light Deep Learning Strategies -- 1.4 Benchmark of Light Embedded Deep Learning on a Plant Imaging Use Case -- 1.4.1 Image Acquisition and Segmentation -- 1.4.2 Model Adaptation -- 1.4.3 Knowledge Distillation -- 1.4.4 Kolmogorov-Arnold Network -- 1.5 Discussion -- 1.6 Conclusion -- Chapter 2: Machine Learning for Studying Plant Evolutionary Developmental Biology -- 2.1 Introduction to Plant Evolutionary Developmental Biology -- 2.1.1 Overview of Plant Evolutionary Developmental Biology -- 2.1.2 Key Concepts in Plant Evolution and Development -- 2.1.3 Importance of Evo-Devo in Understanding Plant Adaptations -- 2.1.4 Role of Computational and AI Tools in Evo-Devo Studies -- 2.2 Basics of ML in Biological Research -- 2.2.1 Fundamentals of ML in Biology -- 2.2.2 Supervised, Unsupervised, and Reinforcement Learning -- 2.2.3 Deep Learning and Neural Networks in Evo-Devo -- 2.2.4 ML Workflow: Data Collection, Processing, Model Selection, and Interpretation -- 2.2.5 Challenges of Applying ML to Evo-Devo Research -- 2.3 ML Applications in Plant Morphological Evolution -- 2.3.1 ML for Analyzing Fossilized Plant Structures -- 2.3.2 Shape and Trait Evolution Using CNNs and Autoencoders -- 2.3.3 3D Reconstruction of Plant Organs Through ML-based Image Processing -- 2.3.4 Quantitative Trait Analysis Using SVM -- 2.3.5 Integrating Phylogenetics and ML for Morphological Adaptation Studies -- 2.4 Genomic and Transcriptomic Insights Through ML -- 2.4.1 Evolutionary Genomics: Identifying Selection Signatures with ML -- 2.4.2 GRN Prediction Using Graph Neural Networks.
2.4.3 ML for Comparative Genomics in Evolutionary Studies -- 2.4.4 Understanding Non-coding RNA Evolution with NLP-based ML Models -- 2.4.5 Unraveling Epigenetic Modifications in Plant Evolution Using ML -- 2.5 Inferring Evolutionary Developmental Pathways Using ML -- 2.5.1 ML Models for Predicting Gene Expression Patterns -- 2.5.2 Identifying Key Developmental Genes via Feature Selection Algorithms -- 2.5.3 Evolution of Transcription Factor Networks with ML -- 2.5.4 Bayesian ML for Inferring Ancestral Gene Interactions -- 2.5.5 Evolution of Polyploidy and Hybridization Analyzed Through ML Model -- 2.6 Phylogenetics and Evolutionary Tree Reconstruction Using ML -- 2.6.1 Phylogenetic Tree Prediction via Deep Learning -- 2.6.2 Bayesian ML for Inferring Evolutionary Relationships -- 2.6.3 Predicting Adaptive Radiation Events with ML Models -- 2.6.4 Network-based Approaches for Studying Horizontal Gene Transfer -- 2.6.5 Automating Phylogenomic Inference Using AI-based Pipelines -- 2.7 ML for Studying Developmental Plasticity and Environmental Adaptation -- 2.7.1 Predicting Phenotypic Plasticity with ML Algorithms -- 2.7.2 Climate-responsive Developmental Evolution Using ML -- 2.7.3 Adaptive Traits Discovery Using ML in Dynamic Environments -- 2.7.4 ML-based Prediction of Plant Evolution Under Climate Change -- 2.8 High-throughput Image-based ML Approaches in Evo-Devo -- 2.8.1 ML for Automated Plant Organ Recognition and Classification -- 2.8.2 Deep Learning for Leaf, Flower, and Root Morphological Evolution -- 2.8.3 CNNs for Large-scale Evolutionary Trait Analysis -- 2.8.4 Time-series ML for Tracking Developmental Transitions -- 2.8.5 Integrating ML with Phenotyping Platforms for Evo-Devo Research -- 2.9 Single-cell and Multi-omics ML Integration in Plant Evo-Devo -- 2.9.1 ML for Single-cell RNA Sequencing Data in Evolutionary Studies.
2.9.2 Integrating Proteomics, Transcriptomics, and Metabolomics with ML -- 2.9.3 Deep Learning for Cell Fate and Differentiation Analysis in Evo-Devo -- 2.9.4 Predicting Evo-Devo Pathways Through Multi-omics Data Fusion -- 2.9.5 ML for Analyzing Spatial and Temporal Omics Data -- 2.10 Ethical, Computational, and Experimental Challenges -- 2.11 Conclusion -- Acknowledgement -- Data Availability -- Chapter 3: Machine Learning for Plant High-Throughput Phenotyping -- 3.1 Introduction -- 3.2 Overview of HTP -- 3.3 ML for Plant Phenotyping -- 3.3.1 What Is ML -- 3.3.2 ML in Handling Big Data -- 3.4 Overview of ML Algorithms in Phenotyping -- 3.4.1 DL in Plant Phenotyping -- 3.4.2 Computer Vision in Phenotyping -- 3.5 Applications of ML in Plant Phenotyping -- 3.5.1 ML for Plant Recognition and Disease Detection -- 3.5.2 Spectral Analysis and Optical Imaging for Stress Detection -- 3.5.3 Hyperspectral and Multispectral Imaging -- 3.5.4 Thermal and Fluorescence Imaging for Stress Analysis -- 3.5.5 ML Approaches for Plant Stress Classification -- 3.5.6 Automated Image Analysis for Trait Extraction -- 3.5.6.1 Morphological Trait Measurement -- 3.5.6.2 Image-based Feature Extraction -- 3.5.7 Prediction Models for Yield Forecasting -- 3.6 Integration of ML with Emerging Technologies -- 3.7 Future Directions and Potential of ML in Agriculture -- 3.8 Case Studies and Real-world Applications -- 3.9 Conclusion -- Chapter 4: Machine Learning for Studying Plant Secondary Metabolites -- 4.1 Introduction -- 4.2 ML Techniques in Metabolite Research -- 4.2.1 Supervised Learning Techniques -- 4.2.2 Unsupervised Learning Techniques -- 4.2.3 Deep Learning Techniques -- 4.2.4 Ensemble Learning Techniques -- 4.2.5 Reinforcement Learning in Metabolomics -- 4.2.6 Feature Selection and Dimensionality Reduction -- 4.2.7 Hybrid Models -- 4.2.8 Emerging Techniques in Metabolomics.
4.3 Applications of ML in PSM Research -- 4.3.1 Predicting Metabolic Pathways -- 4.3.2 Identification of Key Biosynthetic Genes -- 4.3.3 Metabolite Profiling and Classification -- 4.3.4 Enhancing Plant Stress Response Through Metabolite Analysis -- 4.3.5 Chemotaxonomy and Species Identification -- 4.3.6 Pharmacological and Nutraceutical Research -- 4.3.7 Metabolic Engineering for Enhanced PSM Production -- 4.3.8 PSM-based Environmental Monitoring -- 4.3.9 Predictive Modeling for Agricultural Improvement -- 4.4 Challenges and Future Directions -- 4.4.1 Challenges in ML for PSM Research -- 4.4.1.1 Data-related Challenges -- 4.4.1.2 Algorithmic Challenges -- 4.4.1.3 Biological Complexity and Unknown Pathways -- 4.4.1.4 Computational Challenges -- 4.4.2 Future Directions in ML for PSM Research -- 4.4.2.1 Integrating Multi-omics Data -- 4.4.2.2 Advancing Explainable Artificial Intelligence -- 4.4.2.3 Improving Data Augmentation Strategies -- 4.4.2.4 Automation and High-throughput Analysis -- 4.4.2.5 Advancing Computational Infrastructure -- 4.4.2.6 Developing Crop-specific ML Models -- 4.4.3 Ethical Considerations and Regulatory Frameworks -- 4.5 Conclusion -- Chapter 5: Machine Learning for Plant Ecological Research -- 5.1 Introduction to Machine Learning in Ecology -- 5.1.1 Overview of Machine Learning in Ecological Studies -- 5.1.2 Importance of ML in Plant Ecological Research -- 5.1.3 Comparison of Traditional vs. ML-based Ecological Analysis -- 5.2 Data Sources and Preprocessing for Plant Ecology -- 5.2.1 Types of Ecological Data -- 5.2.2 Data Collection Techniques -- 5.2.3 Data Cleaning, Normalization, and Feature Engineering -- 5.3 Machine Learning Techniques for Plant Ecology -- 5.3.1 Supervised Learning -- 5.3.2 Unsupervised Learning -- 5.3.3 Deep Learning -- 5.3.4 Reinforcement Learning -- 5.4 Applications of Machine Learning in Plant Ecology.
5.5 Remote Sensing and AI in Plant Ecology -- 5.5.1 Use of Satellite and Drone Imagery for Plant Monitoring -- 5.5.2 Image Segmentation and Object Detection for Vegetation Analysis -- 5.5.3 AI Models for Automated Plant Health Assessment -- 5.6 Biodiversity Conservation and Ecosystem Monitoring -- 5.6.1 Machine Learning for Biodiversity Pattern Analysis -- 5.6.2 AI-driven Monitoring of Endangered Plant Species -- 5.6.3 Predicting Ecosystem Resilience and Response to Environmental Stressors -- 5.7 Predictive Modeling for Ecological Trends -- 5.7.1 Time-series Forecasting of Ecological Parameters -- 5.7.2 ML Models for Predicting Drought and Deforestation Impact -- 5.7.3 Climate-Plant Interaction Modeling -- 5.8 Challenges and Limitations of Machine Learning in Plant Ecology -- 5.9 Future Perspectives and Emerging Technologies -- 5.10 Conclusion -- Acknowledgement -- Data Availability -- Chapter 6: Machine Learning for Modeling Plant Abiotic Stress Responses -- 6.1 Introduction -- 6.2 Definition of Abiotic Stress -- 6.3 Effect of Abiotic Stress on Crops -- 6.4 Key Applications of Machine Learning in Abiotic Stress Research -- 6.4.1 Phenotypic Prediction -- 6.4.2 Gene Expression Modeling -- 6.4.3 High-throughput Image Analysis -- 6.4.4 Omics Data Integration -- 6.4.5 Stress Response Prediction and Simulation -- 6.5 ML Techniques Commonly Used for Abiotic Stress Modeling -- 6.5.1 Supervised Learning -- 6.5.2 Unsupervised Learning -- 6.5.3 Deep Learning -- 6.6 Challenges and Future Directions -- 6.6.1 Data Availability and Quality -- 6.6.2 Generalization -- 6.6.3 Interpretability -- 6.7 Conclusion -- Chapter 7: Machine Learning for Modeling Plant-Pathogen Interactions -- 7.1 Introduction -- 7.2 Basics of PPI -- 7.3 Basics of ML and Its Integration into Biological Systems -- 7.3.1 Supervised Learning -- 7.3.2 Unsupervised Learning -- 7.3.3 Random Forests.
7.3.4 Naive Bayes.
Record Nr. UNINA-9911042411903321
Chen Jen-Tsung  
Newark : , : John Wiley & Sons, Incorporated, , 2026
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular and Biotechnological Tools for Plant Disease Management / / edited by Jen-Tsung Chen, Masudulla Khan, Aiman Parveen, Jayanta Kumar Patra
Molecular and Biotechnological Tools for Plant Disease Management / / edited by Jen-Tsung Chen, Masudulla Khan, Aiman Parveen, Jayanta Kumar Patra
Autore Chen Jen-Tsung
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (533 pages)
Disciplina 580
Altri autori (Persone) KhanMasudulla
ParveenAiman
PatraJayanta Kumar
Collana Interdisciplinary Biotechnological Advances
Soggetto topico Botany
Plant diseases
Plants
Stress (Physiology)
Plant biotechnology
Biotechnology
Plant Science
Plant Pathology
Plant Signalling
Plant Stress Responses
Plant Biotechnology
ISBN 9789819775101
9819775108
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Recent strategies in the management of bacterial diseases for cereals -- Diagnostics and detection tools for pathogens in food crops -- Molecular diagnostics and management of phyto-parasitic nematodes -- Advances in the management of bacterial diseases of vegetable crops -- Emerging approaches based on genome-wide association studies (GWAS) for crop disease tolerance -- Recent diagnostics, detection and monitoring tools: Implications for plant pathogens and their management -- Molecular diagnostics of plant viruses, viroids, and phytoplasma: An updated overview -- Detection and identification of plant viruses, viroids, and phytoplasma based on high-throughput molecular approaches -- Advances in Contemporary Tools for Detecting and Diagnosing Plant Pathogens -- Advanced molecular techniques in the identification of phytopathogenic fungi -- Plant microRNAs: Identification and their application in disease management -- RNAi as a potential tool for control and management of plant disease: An updated overview -- RNA interference for plant disease management: Updated methods, current applications and future directions -- Emerging molecular tools and breeding strategies for plant bacterial disease management -- Disease-resistant genes and signal transduction pathways and their applications in disease management -- Genome editing technologies for resistance against phytopathogens -- CRISPR/Cas9 system of crop improvement: Understanding the underlying machinery -- CRISPR-edited plants for plant-disease management.
Record Nr. UNINA-9910983048703321
Chen Jen-Tsung  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture
Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture
Autore Chen Jen-Tsung
Edizione [1st ed.]
Pubbl/distr/stampa Sharjah : , : Bentham Science Publishers, , 2023
Descrizione fisica 1 online resource (235 pages)
Disciplina 581.7
Soggetto topico Plants - Effect of stress on
Plant physiology
ISBN 9789815136562
9815136569
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- List of Contributors -- Influence of Abiotic Stress on Molecular Responses of Flowering in Rice -- Chanchal Kumari1, Shobhna Yadav1 and Ramu S. Vemanna1,* -- 1. INTRODUCTION -- 1.1. Receptor for Light and Temperature -- 1.2. Reproduction and Maintenance of Shoot Apical Meristem -- 1.3. Molecular Mechanisms of Flowering -- 1.4. Adaptation of Rice to Different Climatic Conditions -- 1.5. Development Made at Molecular Level to Combat Abiotic Stress in Plants -- CONCLUSION -- REFERENCE -- A Peep into the Tolerance Mechanism and the Sugar Beet Response to Salt Stress -- Varucha Misra1,* and Ashutosh Kumar Mall1 -- 1. INTRODUCTION -- 1.1. Characteristics of Halophytes for Salt Stress Condition -- 1.2. Salt Stress Tolerance Mechanism in Sugar Beet -- 1.3. Salt Overly Sensitive (SOS) Pathway for Salt Tolerance -- 1.4. The Response of Sugar Beet under Salt Stress -- CONCLUSION -- REFERENCES -- The Role of Functional Genomics to Fight the Abiotic Stresses for Better Crop Quality and Production -- Neha Sharma1,*, Bharti Choudhary1 and Nimisha Sharma2 -- 1. INTRODUCTION -- 1.1. The Use of Functional Genomics in Studying Plant Physiology under Abiotic Stresses -- 1.1.1. Microarrays and MicroRNAs -- 1.1.2. Serial Analysis of Gene Expression (SAGE) -- 1.1.3. RNA Sequencing -- 1.1.4. RNAi -- 1.1.5. CRISPR/Cas9 -- 1.1.6. Tilling and ECO Tilling -- CONCLUSION -- REFERENCES -- Genetic Enhancement for Salt Tolerance in Rice -- Morphological and Physiological Responses of Plants Under Temperature Stress and Underlying Mechanisms -- Asma Shakeel1,*, Syed Andleeba Jan1, Shakeel A Mir2, Z. Mehdi1, Inayat M. Khan1 and Mehnaz Shakeel1 -- 1. INTRODUCTION -- 2. TEMPERATURE STRESS -- 3. PLANT RESPONSES TO HIGH TEMPERATURE (HT) STRESS: AN OVERVIEW -- 3.1. Germination Stage.
3.2. Photosynthesis -- 3.3. Reproductive Growth -- 3.4. Transpiration -- 3.5. Water Relation -- 3.6. Oxidative Stress -- 3.7. Yield -- 4. MITIGATION STRATEGIES FOR HIGH-TEMPERATURE STRESS -- 4.1. The Function of Modified Membrane in Heat Tolerance -- 4.2. The Function of Antioxidative Defense in Heat Tolerance -- 4.3. The Function of Heat Stress Proteins (Hsps) in Heat Tolerance -- 4.4. The Function of Exogenous Phyto-protectants in Heat Tolerance -- 4.5. Genetic Engineering Approach For Heat Tolerance -- 5. PLANT RESPONSE TO LOW-TEMPERATURE STRESS: AN OVERVIEW -- 5.1. Chilling Injury -- 5.2. Cytological Changes Caused by Chilling Injury -- 5.3. Physiological Changes Caused by Chilling Injury -- 5.4. Water Regimes -- 5.5. Mineral Nutrition -- 5.6. Respiration Rate -- 5.7. Photosynthesis Rate -- 6. MECHANISM FOR CHILLING TOLERANCE -- 6.1. Thermal Effect -- 6.2. Chemical Treatment -- 6.3. Cellular and Genetic Engineering -- 6.4. Freezing Injury -- 7. MECHANISM FOR FREEZING TOLERANCE -- 7.1. Adaptation -- 7.2. Avoidance -- 7.3. Tolerance -- CONCLUSION -- REFERENCES -- Molecular Studies and Metabolic Engineering of Phytohormones for Abiotic Stress Tolerance -- Sekhar Tiwari1 and Ravi Rajwanshi2,* -- 1. INTRODUCTION -- 2. PHYTOHORMONES MEDIATED ABIOTIC STRESS TOLERANCE -- 2.1. Abscisic Acid (ABA) -- 2.2. Auxins (IAA) -- 2.3. Cytokinins (CKs) -- 2.4. Ethylene (ET) -- 2.5. Gibberellins (GAs) -- 2.6. Brassinosteroids (BRs) -- 2.7. Jasmonates (JAs) -- 2.8. Salicylic Acid (SA) -- 2.9. Strigolactones (SL) -- 3. MOLECULAR STUDIES AND METABOLIC ENGINEERING OF PHYTOHORMONES -- CONCLUSION AND PERSPECTIVES -- REFERENCES -- Living with Abiotic Stress from a Plant Nutrition Perspective in Arid and Semi-arid Regions -- Nesreen H. Abou-Baker1,* -- 1. INTRODUCTION -- 2. BACKGROUND AND REVIEW OF LITERATURE -- 2.1. The Ecological Factors Related to Plant Production.
2.2. The Abiotic Stressors Under Arid And Semi-Arid Regions -- 2.2.1. Salinity -- 2.2.2. Drought -- 2.2.3. Heat -- 2.2.4. Pollution -- 2.2.5. The Impact of Abiotic Stressors on Plant -- 2.3. Ordinary Management and Rehabilitation of Soils and Plants under Stress -- 2.3.1. Soil Management -- 2.3.2. Water Management -- 2.3.3. Crop Management -- 2.4. Modern Techniques to Combate Abiotic Stress -- 2.4.1. Nano-technology -- 2.4.2. Intelligent-green Composites -- 2.4.3. Genetic Engineering -- 2.5. Economic Aspects -- 3. A FUTURE VISION/ CONCLUSION -- REFERENCES -- Understanding Molecular Mechanisms of Plant Physiological Responses Under Drought and Salt Stresses -- Abhishek Kanojia1, Ayushi Jaiswal1 and Yashwanti Mudgil1,* -- 1. INTRODUCTION -- 1.1. Signaling Mechanisms Under Salt Stress -- 1.2. Salt Stress Regulation in Plants -- 1.3. Signaling in Drought Stress -- 1.4. Pathways in Details -- 1.5. The Core ABA-Signalling Pathway -- 1.6. PP2C: Regulator of ABA Signalling in Plants -- 1.7. ABA Receptors -- 1.8. SnRK2 -- 1.9. ABA-Dependent Signalling Pathway -- 1.10. ABA-Independent Pathway -- 1.11. Early Osmotic Stress Signalling Pathway -- 1.12. Calcium Dependent Signalling -- 1.13. MAPK-mediated Signalling Pathway -- 1.14. Proteolysis -- 1.15. Phospholipid Signalling -- 1.16. ROS-mediated Signalling -- 1.17. Ethylene (ET) Signalling -- 1.18. Jasmonic Acid (JA) Signalling -- 1.19. Salicylic Acid (SA) Signalling -- 1.20. Brassinosteroids (BRs) Signalling -- CONCLUSION -- REFERENCES -- Salt Stress and its Mitigation Strategies for Enhancing Agricultural Production -- Priyanka Saha1,*, Jitendra Singh Bohra2, Anamika Barman1 and Anurag Bera2 -- 1. INTRODUCTION -- 2. BACKGROUND -- 3. PROBLEM SOILS AND THEIR FEATURES -- 3.1. Acid Soil -- 3.2. Salt-affected Soils -- 4. DIAGNOSTIC CRITERIA AND CLASSIFICATION -- 5. MANAGEMENT STRATEGIES.
5.1. Management Strategies for Reclaiming Acid Soil -- 5.2. Management Strategies for Reclaiming Sodic Soil -- 5.3. Management of Saline Soil -- CONCLUSION -- PATH AHEAD -- REFERENCES -- Impact of Heat Coupled with Drought Stress on Plants -- Battana Swapna1,*, Srinivasan Kameswaran1, Mandala Ramakrishna1 and Thummala Chandrasekhar2 -- 1. INTRODUCTION -- 1.1. Morpho-physiological Responses to Drought Coupled with Heat Stress -- 1.2. Plant Growth -- 1.3. Root System -- 1.4. Photosynthesis -- 1.5. Metabolites -- 1.6. Antioxidants -- 1.7. Yield -- 1.8. Molecular Responses to Heat Coupled with Drought Stress -- 1.9. New Approaches for Developing Tolerance to Heat Coupled with Drought Stress -- CONCLUSION AND FUTURE PERPSPECTIVES -- REFERENCES -- Subject Index -- Back Cover.
Record Nr. UNINA-9911008994203321
Chen Jen-Tsung  
Sharjah : , : Bentham Science Publishers, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular Aspects of Plant Salinity Stress and Tolerance
Molecular Aspects of Plant Salinity Stress and Tolerance
Autore Chen Jen-Tsung
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (286 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato abiotic stress
ACC deaminase
amino acids
antioxidation
aquaporin
aquaporins
Arabidopsis thaliana
barley
biotechnology breeding
calmodulin-like
cell wall integrity
cell wall sensor
crosstalk
CrRLK1Ls
drought stress
endocytosis
exogenous jasmonate applications
GmbZIP15
GWAS
halophiles
halophyte
halophytic wild barley
heterologous expression
high-affinity potassium transporter (HKT)
high-throughput sequencing
Hordeum marinum
IAA
ion homeostasis
ion transport
ionome
jasmonate signaling pathway
jasmonates
LRXs
metabolome
Millettia pinnata
n/a
Na+ transporter
oocytes
osmoregulation
osmotic stress
PGPR
plant growth
plant growth-promoting rhizobacteria (PGPR)
plasma membrane intrinsic proteins (PIPs)
QTLs
quantitative reverse transcriptase PCR (qRT-PCR)
rice
RNA sequence analysis (RNA-seq)
RNA-seq
salinity
salt stress
salt tolerance
seed priming
sensing
signaling
soybean
Sporobolus virginicus
stress adaptation
transcription factor
transcription factors
transcriptome
watermelon
Zygophyllum xanthoxylum
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557350603321
Chen Jen-Tsung  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiosensors for Crop Monitoring and Precision Agriculture / / edited by Jen-Tsung Chen
Nanobiosensors for Crop Monitoring and Precision Agriculture / / edited by Jen-Tsung Chen
Autore Chen Jen-Tsung
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (427 pages)
Disciplina 620.5
660.6
Collana Agroecosystem Dynamics and Sustainable Practices
Soggetto topico Nanobiotechnology
Agricultural biotechnology
Nanotechnology
Microbiology - Technique
Agricultural Biotechnology
Microbiology Techniques
ISBN 9789819683352
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Nanobiosensors for Precision Agrobiotechnology -- Chapter 2. Optical Nanobiosensors in Precision Agriculture -- Chapter 3. Calorimetric Nanobiosensors: Revolutionizing Precision Agriculture for Sustainable Crop Management -- Chapter 4. Immuno-Nanobiosensors in Precision Agriculture: Methods and Applications -- Chapter 5. Enzymatic Nanobiosensors in Precision Agriculture: Methods and Applications -- Chapter 6. Apta-Nanobiosensors in Precision Agriculture: Methods and Applications -- Chapter 7. Nanobiosensors for Precision Plant Disease Management -- Chapter 8. Nanobiosensors in Plant Environmental Stress Management: Methods and Current Achievements -- Chapter 9. Nanobiosensors: Advanced Detection and Monitoring of Plant Hormones -- Chapter 10. Nanobiosensors for Detecting and Monitoring Soil Conditions -- Chapter 11. Nanobiosensors for Precision Fertilizer Management -- Chapter 12. Nanobiosensors for Precision Pesticide Management -- Chapter 13. Nanobiosensors for Real-Time and High-Resolution Crop Monitoring -- Chapter 14. Regulations and Ethical Considerations for Nanotechnology in Agri-Food Applications.
Record Nr. UNINA-9911018661603321
Chen Jen-Tsung  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui