Vai al contenuto principale della pagina

Nanocarrier Vaccines : Biopharmaceutics-Based Fast Track Development



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chavda Vivek P Visualizza persona
Titolo: Nanocarrier Vaccines : Biopharmaceutics-Based Fast Track Development Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (519 pages)
Altri autori: ApostolopoulosVasso  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Part 1 General -- Chapter 1 History of Nanoparticles -- 1.1 Introduction -- 1.2 History of Nanoparticles -- 1.3 Modern Development of Nanoparticles -- 1.4 Type of Nanoparticles -- 1.5 Properties of Nanoparticles -- 1.5.1 Size -- 1.5.2 Shape -- 1.5.3 Surface Area -- 1.6 Importance of Nanoparticles -- 1.7 Conclusion and Future Prospect -- References -- Chapter 2 Composition of Nanoparticles -- 2.1 Introduction -- 2.2 Types of Nanoparticles -- 2.2.1 Polymeric Nanoparticles -- 2.2.1.1 Polymeric Micelles -- 2.2.1.2 Dendrimer -- 2.2.1.3 Nanosphere -- 2.2.1.4 Nanocapsule -- 2.2.1.5 Polymersome -- 2.2.1.6 Nanocomplex -- 2.2.1.7 Nanogel -- 2.2.2 Inorganic Nanoparticle -- 2.2.2.1 Gold Nanoparticle -- 2.2.2.2 Silica Nanoparticle -- 2.2.2.3 Magnetic Nanoparticle -- 2.2.2.4 Quantum Dots -- 2.2.2.5 Nanocarbon -- 2.2.3 Hybrid Nanoparticle -- 2.2.3.1 Cell Membrane Coated Nanoparticle -- 2.2.3.2 Lipid Polymer Nanoparticle -- 2.2.3.3 Organic-Inorganic Nanocomposite -- 2.2.4 Bioinspired Nanoparticle -- 2.2.4.1 Exosomes -- 2.2.4.2 Protein Nanoparticle -- 2.2.4.3 DNA Nanostructure -- 2.2.5 Lipid-Based Nanoparticle -- 2.2.5.1 Liposome -- 2.2.5.2 Lipoplex -- 2.2.5.3 Solid Lipid Nanoparticle -- 2.3 Composition of Nanoparticles -- 2.3.1 Chitosan -- 2.3.2 Albumin -- 2.3.3 Polylactic Acid -- 2.3.4 Polylactide-co-glycolide (PLGA) -- 2.3.5 Polyacrylate -- 2.4 Synthesis of Nanoparticles -- 2.4.1 Top-Down Approach -- 2.4.1.1 Ball Milling -- 2.4.1.2 Physical Vapor Deposition (PVD) -- 2.4.1.3 Melt Mixing -- 2.4.1.4 Pulse Laser Ablation -- 2.4.2 Bottom-Up Approach -- 2.4.2.1 Chemical Vapor Deposition (CVD) -- 2.4.2.2 Thermal Decomposition Method -- 2.4.2.3 Chemical Methods -- 2.4.2.4 Biological Methods -- 2.5 Nanoparticle Characterization by Various Instrumental Techniques.
2.5.1 Dynamic Light Scattering (DLS) -- 2.5.2 Zeta Potential -- 2.5.3 Microscopic Techniques to Characterize Nanoparticles -- 2.5.3.1 Scanning Electron Microscopy (SEM) -- 2.5.3.2 Transmission Electron Microscopy (TEM) -- 2.5.4 Spectroscopic Techniques to Characterize Nanoparticles -- 2.5.4.1 Ultraviolet-Visible Spectroscopy (UV-Vis) -- 2.5.4.2 Raman Spectroscopy -- 2.5.4.3 Fourier Transform Infrared Spectroscopy (FTIR) -- 2.5.5 X-Ray Diffraction Method (XRD) -- 2.6 Understanding Nanotoxicity: Potential Risks and Implications -- 2.7 Conclusion -- References -- Chapter 3 Nanotechnology and Vaccine Development -- 3.1 Introduction -- 3.2 Overview of Vaccine Development -- 3.3 Advantages of Nanoparticles in Vaccine Delivery -- 3.4 Types of Nanoparticles as Vaccine Carriers -- 3.4.1 Liposomes -- 3.4.2 Polymer-Based Nanoparticles -- 3.4.3 Virus-Like Particles (VLPs) -- 3.4.4 Nanogels -- 3.4.5 Inorganic Nanoparticles -- 3.5 Development of Nanoparticle-Based Vaccine -- 3.5.1 Viral Vector-Based Nanoparticle -- 3.5.2 Lipid-Based Nanoparticles -- 3.5.3 DNA-Based Nanoparticles -- 3.5.4 mRNA-Based Nanoparticles -- 3.5.5 Protein-Based Nanoparticles -- 3.6 Adjuvants and their Role in Vaccine Development -- 3.7 Nanoscale Adjuvants -- 3.8 Advantages -- 3.9 Techniques for Nanoscale Adjuvants -- 3.10 Route of Administration for Vaccines -- 3.11 Recent Advances in Nanotechnology-Based Vaccines -- 3.12 The Regulatory Perspective of Nanoparticle-Based Vaccine Development -- 3.13 Future Prospects -- 3.14 Conclusion -- References -- Chapter 4 Nanoparticle Formulations: A Sustainable Approach to Biodegradable and Non-Biodegradable Products -- 4.1 Introduction -- 4.2 Types of Nanoparticles -- 4.3 Preparation of Nanoparticles -- 4.4 Factors Affecting Selection of Method -- 4.4.1 Pressure -- 4.4.2 Particle Shape and Size -- 4.4.3 Environment -- 4.4.4 Pore Size.
4.4.5 Particular Method or Technique -- 4.4.6 Cost of Preparation -- 4.4.7 Proximity -- 4.4.8 Time -- 4.4.9 Other Variables -- 4.5 Polymers Used in NP Formulation -- 4.6 Nanoparticle Formulations Based on Biodegradable Polymers -- 4.7 Nanoparticle Formulations Based on Non-Biodegradable Polymers -- 4.8 Nanoparticle Formulations Based on Natural Polymers -- 4.9 Challenges in NPs from Laboratory to Industrial Scale-Up -- 4.10 Nanoparticle-Based Approved & -- Marketed Formulations -- 4.11 Future Aspects & -- Conclusion -- References -- Chapter 5 Nanoparticle Properties: Size, Shape, Charge, Inertness, Efficacy, Morphology -- 5.1 Introduction -- 5.2 Applications of Nanoparticle Formulations -- 5.3 Interaction with Cells -- 5.4 Properties of Nanoparticles -- 5.4.1 Classification of Nanoparticle Properties -- 5.4.1.1 Physicochemical Properties -- 5.4.1.2 Optical Properties -- 5.4.1.3 Magnetic Properties -- 5.4.1.4 Catalytic Properties -- 5.4.1.5 Mechanical Properties -- 5.4.2 Different Properties -- 5.4.2.1 Size -- 5.4.2.2 Shape -- 5.4.2.3 Charge -- 5.4.2.4 Inertness -- 5.4.2.5 Efficacy -- 5.4.2.6 Morphology -- 5.5 Role of Physicochemical Properties in Nanoparticle Toxicity -- 5.6 Conclusion -- References -- Part 2 Nanoparticles to Deliver Antigen -- Chapter 6 Viral Vector-Based Nanoparticles -- 6.1 Introduction -- 6.2 Characteristics of Viral Vector-Based Nanoparticles -- 6.3 Applications -- 6.3.1 Viral Nanoparticles for Drug Delivery -- 6.3.1.1 Antimicrobial Therapies -- 6.3.1.2 Cardiovascular Therapies -- 6.3.2 Viral Nanoparticles for Imaging -- 6.3.2.1 Nanoparticles are Used in PET/SPECT Scans -- 6.3.2.2 Nanoparticles Used in Ultrasonic Tests -- 6.3.2.3 Nanoparticles Utilized in CT Scans -- 6.3.2.4 Nanoparticles Employed in MRI Biomedical Applications -- 6.3.2.5 Illustrations of Nanoparticles Utilized in Fluorescence-Based Biological Applications.
6.3.3 Viral Nanoparticles for Immunotherapy -- 6.3.4 Viral Nanoparticles for Theranostic Applications -- 6.4 Novel Advancements in Applications of Viral Nanoparticles -- 6.5 Limitations and Prospects of Viral Vector-Based Nanoparticle Approach -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Lipid-Based Nanoparticles -- 7.1 Introduction -- 7.2 Types of Lipid-Based Nanoparticles -- 7.2.1 Solid Lipid Nanoparticles (SLNs) -- 7.2.2 Nanostructured Lipid Carriers (NLCs) -- 7.3 Synthesis of Lipid-Based Nanoparticles -- 7.3.1 Introduction to Lipids -- 7.3.2 Methods for Formulating Lipid Nanoparticles -- 7.3.2.1 High-Pressure Homogenization -- 7.3.2.2 Solvent Emulsification-Evaporation -- 7.3.2.3 Microemulsion-Based Method -- 7.3.2.4 Hot-Melt Homogenization -- 7.3.2.5 Spray Drying -- 7.3.2.6 Solvent Injection Method -- 7.3.2.7 Microfludics -- 7.4 Characterization of Lipid Nanoparticles -- 7.4.1 Size and Shape -- 7.4.2 Surface Charge -- 7.4.2.1 Analytical Techniques for Surface Charge Characterization -- 7.4.2.2 Zeta Potential Measurement -- 7.4.2.3 Electrophoresis -- 7.4.2.4 Isoelectric Focusing -- 7.4.3 Encapsulation Efficiency -- 7.4.3.1 Factors Affecting Encapsulation Efficiency -- 7.4.3.2 Analytical Techniques for Encapsulation Efficiency Characterization -- 7.4.4 Stability -- 7.4.4.1 Factors Affecting Stability -- 7.4.4.2 Analytical Techniques for Stability Characterization -- 7.5 Applications of Lipid-Based Nanoparticles in Vaccines -- 7.5.1 Enhancement of Immune Response -- 7.5.2 Targeted Delivery -- 7.5.2.1 Cancer Immunotherapy -- 7.5.2.2 mRNA-Based Vaccines -- 7.5.2.3 Gene Therapy -- 7.5.3 Adjuvant Effects -- 7.5.3.1 mRNA COVID-19 Vaccines -- 7.5.3.2 Human Papillomavirus (HPV) Vaccine -- 7.5.3.3 Influenza Vaccine -- 7.6 Challenges and Future Directions -- 7.6.1 Safety and Toxicity Concerns -- 7.6.1.1 Preclinical Safety Evaluation.
7.6.1.2 Human Pharmacology Studies -- 7.6.1.3 Postmarketing Surveillance -- 7.6.1.4 Adverse Event Reporting -- 7.6.2 Stability Issues -- 7.6.2.1 Formulation Optimization -- 7.6.2.2 Analytical Method Development -- 7.6.2.3 Accelerated Stability Studies -- 7.6.2.4 Quality by Design (QbD) -- 7.6.3 Scale-Up Production Challenges -- 7.6.3.1 Equipment Design -- 7.6.3.2 Process Optimization -- 7.6.3.3 Regulatory Compliance -- 7.6.4 Opportunities for Future Research -- 7.6.4.1 Novel Antigen and Adjuvant Formulations -- 7.6.4.2 Targeted Delivery -- 7.6.4.3 Manufacturing Process Optimization -- 7.6.4.4 Immunological Mechanisms -- 7.6.4.5 Opportunities for Future Research -- 7.7 Conclusion -- References -- Chapter 8 Nanoparticle-Based mRNA Vaccines: Are We One Step Closer to Targeted Cancer Therapy? -- 8.1 Introduction -- 8.2 Use of mRNA in Vaccines: Advantages and Challenges -- 8.3 How Do mRNA Vaccines Work? -- 8.4 Nanocarriers for mRNA Delivery -- 8.4.1 Liposomes and RNA Lipoplexes -- 8.4.2 Lipid Nanoparticles -- 8.4.3 Polymer-Based Nanoparticles -- 8.4.4 Hybrid Nanoparticles -- 8.5 Nanoparticle-Based mRNA Vaccines in Cancer Therapy -- 8.5.1 Breast Cancer -- 8.5.2 Colorectal Cancer -- 8.5.3 Lung Cancer -- 8.5.4 Glioma Tumor -- 8.5.5 Other Tumors -- 8.6 Clinical Trials -- 8.6.1 Considerations for Clinical Translation -- 8.7 Conclusion -- References -- Chapter 9 Protein Delivery by Nanoparticles -- 9.1 Introduction -- 9.2 Major Challenges in Protein Delivery -- 9.3 Nanotechnology -- 9.4 Nanoparticles -- 9.4.1 Nanocarriers -- 9.4.2 Protein Nanocarrier -- 9.4.3 Protein and Its Type Used to Produce Protein Nanoparticles -- 9.4.3.1 Silk Protein Fibroin -- 9.4.3.2 Human Serum Albumin -- 9.4.3.3 Gliadin -- 9.4.3.4 Gelatin -- 9.4.3.5 Legumin -- 9.4.3.6 30Kc19 Protein Obtained from Silkworm Hemolymph -- 9.4.3.7 Ferritin -- 9.5 Methods of Preparation.
9.5.1 Chemical Methods.
Titolo autorizzato: Nanocarrier Vaccines  Visualizza cluster
ISBN: 9781394175468
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877230703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui