top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi
Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi
Autore Krichen Saoussen
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (186 p.)
Disciplina 519.6
Collana Focus Computer Engineering Series
Soggetto topico Constrained optimization
Differential equations, Partial
Telecommunication
ISBN 1-118-98424-2
1-118-98426-9
1-118-98425-0
Classificazione 90-0190C3590C2705C90
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover page; Half-Title page; Title page; Copyright page; Contents; List of Tables; List of Figures; List of Algorithms; Introduction; 1: Basic Concepts in Optimization and Graph Theory; 1.1. Introduction; 1.2. Notation; 1.3. Problem structure and variants; 1.4. Features of an optimization problem; 1.5. A didactic example; 1.6. Basic concepts in graph theory; 1.6.1. Degree of a graph; 1.6.2. Matrix representation of a graph; 1.6.3. Connected graphs; 1.6.4. Itineraries in a graph; 1.6.5. Tree graphs; 1.6.6. The bipartite graphs; 1.7. Conclusion; 2: Knapsack Problems; 2.1. Introduction
2.2. Graph modeling of the knapsack problem2.3. Notation; 2.4. 0-1 knapsack problem; 2.5. An example; 2.6. Multiple knapsack problem; 2.6.1. Mathematical model; 2.6.2. An example; 2.7. Multidimensional knapsack problem; 2.7.1. Mathematical model; 2.7.2. An example; 2.8. Quadratic knapsack problem; 2.8.1. Mathematical model; 2.8.2. An example; 2.9. Quadratic multidimensional knapsack problem; 2.9.1. Mathematical model; 2.9.2. An example; 2.10. Solution approaches for knapsack problems; 2.10.1. The greedy algorithm; 2.10.2. A genetic algorithm for the KP; 2.10.2.1. Solution encoding
2.10.2.2. Crossover2.10.2.3. Mutation; 2.11. Conclusion; 3: Packing Problems; 3.1. Introduction; 3.2. Graph modeling of the bin packing problem; 3.3. Notation; 3.4. Basic bin packing problem; 3.4.1. Mathematical modeling of the BPP; 3.4.2. An example; 3.5. Variable cost and size BPP; 3.5.1. Mathematical model; 3.5.2. An example; 3.6. Vector BPP; 3.6.1. Mathematical model; 3.6.2. An example; 3.7. BPP with conflicts; 3.7.1. Mathematical model; 3.7.2. An example; 3.8. Solution approaches for the BPP; 3.8.1. The next-fit strategy; 3.8.2. The first-fit strategy; 3.8.3. The best-fit strategy
3.8.4. The minimum bin slack3.8.5. The minimum bin slack'; 3.8.6. The least loaded heuristic; 3.8.7. A genetic algorithm for the bin packing problem; 3.8.7.1. Solution encoding; 3.8.7.2. Crossover; 3.8.7.3. Mutation; 3.9. Conclusion; 4: Assignment Problem; 4.1. Introduction; 4.2. Graph modeling of the assignment problem; 4.3. Notation; 4.4. Mathematical formulation of the basic AP; 4.4.1. An example; 4.5. Generalized assignment problem; 4.5.1. An example; 4.6. The generalized multiassignment problem; 4.6.1. An example; 4.7. Weighted assignment problem
4.8. Generalized quadratic assignment problem4.9. The bottleneck GAP; 4.10. The multilevel GAP; 4.11. The elastic GAP; 4.12. The multiresource GAP; 4.13. Solution approaches for solving the AP; 4.13.1. A greedy algorithm for the AP; 4.13.2. A genetic algorithm for the AP; 4.13.2.1. Solution encoding; 4.13.2.2. Crossover; 4.13.2.3. Mutation; 4.14. Conclusion; 5: The Resource Constrained Project Scheduling Problem; 5.1. Introduction; 5.2. Graph modeling of the RCPSP; 5.3. Notation; 5.4. Single-mode RCPSP; 5.4.1. Mathematical modeling of the SM-RCPSP; 5.4.2. An example of an SM-RCPSP
5.5. Multimode RCPSP
Record Nr. UNINA-9910132164503321
Krichen Saoussen  
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi
Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi
Autore Krichen Saoussen
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (186 p.)
Disciplina 519.6
Collana Focus Computer Engineering Series
Soggetto topico Constrained optimization
Differential equations, Partial
Telecommunication
ISBN 1-118-98424-2
1-118-98426-9
1-118-98425-0
Classificazione 90-0190C3590C2705C90
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover page; Half-Title page; Title page; Copyright page; Contents; List of Tables; List of Figures; List of Algorithms; Introduction; 1: Basic Concepts in Optimization and Graph Theory; 1.1. Introduction; 1.2. Notation; 1.3. Problem structure and variants; 1.4. Features of an optimization problem; 1.5. A didactic example; 1.6. Basic concepts in graph theory; 1.6.1. Degree of a graph; 1.6.2. Matrix representation of a graph; 1.6.3. Connected graphs; 1.6.4. Itineraries in a graph; 1.6.5. Tree graphs; 1.6.6. The bipartite graphs; 1.7. Conclusion; 2: Knapsack Problems; 2.1. Introduction
2.2. Graph modeling of the knapsack problem2.3. Notation; 2.4. 0-1 knapsack problem; 2.5. An example; 2.6. Multiple knapsack problem; 2.6.1. Mathematical model; 2.6.2. An example; 2.7. Multidimensional knapsack problem; 2.7.1. Mathematical model; 2.7.2. An example; 2.8. Quadratic knapsack problem; 2.8.1. Mathematical model; 2.8.2. An example; 2.9. Quadratic multidimensional knapsack problem; 2.9.1. Mathematical model; 2.9.2. An example; 2.10. Solution approaches for knapsack problems; 2.10.1. The greedy algorithm; 2.10.2. A genetic algorithm for the KP; 2.10.2.1. Solution encoding
2.10.2.2. Crossover2.10.2.3. Mutation; 2.11. Conclusion; 3: Packing Problems; 3.1. Introduction; 3.2. Graph modeling of the bin packing problem; 3.3. Notation; 3.4. Basic bin packing problem; 3.4.1. Mathematical modeling of the BPP; 3.4.2. An example; 3.5. Variable cost and size BPP; 3.5.1. Mathematical model; 3.5.2. An example; 3.6. Vector BPP; 3.6.1. Mathematical model; 3.6.2. An example; 3.7. BPP with conflicts; 3.7.1. Mathematical model; 3.7.2. An example; 3.8. Solution approaches for the BPP; 3.8.1. The next-fit strategy; 3.8.2. The first-fit strategy; 3.8.3. The best-fit strategy
3.8.4. The minimum bin slack3.8.5. The minimum bin slack'; 3.8.6. The least loaded heuristic; 3.8.7. A genetic algorithm for the bin packing problem; 3.8.7.1. Solution encoding; 3.8.7.2. Crossover; 3.8.7.3. Mutation; 3.9. Conclusion; 4: Assignment Problem; 4.1. Introduction; 4.2. Graph modeling of the assignment problem; 4.3. Notation; 4.4. Mathematical formulation of the basic AP; 4.4.1. An example; 4.5. Generalized assignment problem; 4.5.1. An example; 4.6. The generalized multiassignment problem; 4.6.1. An example; 4.7. Weighted assignment problem
4.8. Generalized quadratic assignment problem4.9. The bottleneck GAP; 4.10. The multilevel GAP; 4.11. The elastic GAP; 4.12. The multiresource GAP; 4.13. Solution approaches for solving the AP; 4.13.1. A greedy algorithm for the AP; 4.13.2. A genetic algorithm for the AP; 4.13.2.1. Solution encoding; 4.13.2.2. Crossover; 4.13.2.3. Mutation; 4.14. Conclusion; 5: The Resource Constrained Project Scheduling Problem; 5.1. Introduction; 5.2. Graph modeling of the RCPSP; 5.3. Notation; 5.4. Single-mode RCPSP; 5.4.1. Mathematical modeling of the SM-RCPSP; 5.4.2. An example of an SM-RCPSP
5.5. Multimode RCPSP
Record Nr. UNINA-9910811182603321
Krichen Saoussen  
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui