top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Hydrologic Forecasts and Water Resources Management
Advances in Hydrologic Forecasts and Water Resources Management
Autore Chang Fi-John
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico Research and information: general
Soggetto non controllato artificial intelligence
artificial neural networks
cascade hydropower reservoirs
cascade reservoirs
changing environments
climate change impacts
coupled models
dammed lake
data synthesis
data-scarce deglaciating river basin
degree of balance and approach
elastic-ball modification
elasticity coefficient
empirical mode decomposition
feasible search space
flood control
flood risk
flood-risk map
forecast evaluation
generalized likelihood uncertainty estimation
Generalized Likelihood Uncertainty Estimation (GLUE)
GloFAS-Seasonal
GR4J model
gravitational search algorithm
grey entropy method
highly urbanized area
Hushan reservoir
hydrodynamic modelling
hydrologic forecasting
impoundment operation
Internet of Things (IoT)
interval number
landslide
loss-benefit ratio of ecology and power generation
machine learning
machine learning model
Mahalanobis-Taguchi System
multi-objective optimal operation model
multi-objective optimization
multi-objective reservoir operation
NDVI
opposition learning
parameter uncertainty
Pareto-front optimal solution set
partial mutation
probabilistic forecast
random forest
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
regional flood inundation depth
risk
Sequential Gaussian Simulation
signal-to-noise ratio
small and medium-scale rivers
Snowmelt Runoff Model
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
temporal transferability
Three Gorges Reservoir
time-varying parameter
TOPSIS
uncertainty
uncertainty analysis
Unscented Kalman Filter
urban hydrological model
urban stormwater
water resources management
western China
whole region perspective
Yangtze River
Yarlung Zangbo River
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557110703321
Chang Fi-John  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence Techniques in Hydrology and Water Resources Management / / Fi-John Chang, Li-Chiu Chang, Jui-Fa Chen, editors
Artificial Intelligence Techniques in Hydrology and Water Resources Management / / Fi-John Chang, Li-Chiu Chang, Jui-Fa Chen, editors
Pubbl/distr/stampa Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Descrizione fisica 1 online resource (302 pages)
Disciplina 551.48
Soggetto topico Hydrology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910729782003321
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flood Forecasting Using Machine Learning Methods / Li-Chiu Chang, Fi-John Chang, Kuolin Hsu
Flood Forecasting Using Machine Learning Methods / Li-Chiu Chang, Fi-John Chang, Kuolin Hsu
Autore Chang Li-Chiu
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2019
Descrizione fisica 1 online resource (1 p.)
Soggetto non controllato data science; big data; artificial intelligence; soft computing; extreme event management; time series prediction; LSTM; rainfall-runoff; flood events; flood forecasting; data assimilation; particle filter algorithm; micro-model; Lower Yellow River; ANN; hydrometeorology; flood forecasting; real-time; postprocessing; machine learning; early flood warning systems; hydroinformatics; database; flood forecast; Google Maps - data scarce basins; runoff series; data forward prediction; ensemble empirical mode decomposition (EEMD); stopping criteria; method of tracking energy differences (MTED); deep learning; convolutional neural networks; superpixel; urban water bodies; high-resolution remote-sensing images; monthly streamflow forecasting; artificial neural network; ensemble technique; phase space reconstruction; empirical wavelet transform; hybrid neural network; flood forecasting; self-organizing map; bat algorithm; particle swarm optimization; flood routing; Muskingum model; machine learning methods; St. Venant equations; rating curve method; nonlinear Muskingum model; hydrograph predictions; flood routing; Muskingum model; hydrologic models; improved bat algorithm; Wilson flood; Karahan flood; flood susceptibility modeling; ANFIS; cultural algorithm; bees algorithm; invasive weed optimization; Haraz watershed; ANN-based models; flood inundation map; self-organizing map (SOM); recurrent nonlinear autoregressive with exogenous inputs (RNARX); ensemble technique; artificial neural networks; uncertainty; streamflow predictions; sensitivity; flood forecasting; extreme learning machine (ELM); backtracking search optimization algorithm (BSA); the upper Yangtze River; deep learning; LSTM network; water level forecast; the Three Gorges Dam; Dongting Lake; Muskingum model; wolf pack algorithm; parameters; optimization; flood routing; flash-flood; precipitation-runoff; forecasting; lag analysis; random forest; machine learning; flood prediction; flood forecasting; hydrologic model; rainfall-runoff - hybrid & ensemble machine learning; artificial neural network; support vector machine; natural hazards & disasters; adaptive neuro-fuzzy inference system (ANFIS); decision tree; survey; classification and regression trees (CART)
ISBN 9783038975496
3038975494
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910765788503321
Chang Li-Chiu  
Basel, Switzerland : , : MDPI, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui