top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Hyperspectral Data Exploitation
Advances in Hyperspectral Data Exploitation
Autore Chang Chein-I
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (434 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato air temperature
anomaly detection
atmospheric transmittance
attention mechanism
band selection
band selection (BS)
boundary-aware constraint
carbon dioxide absorption
change detection
channel augmented attention
classification
coffee beans
color formation models
constrained energy minimization (CEM)
constrained sparse representation
constrained-target optimal index factor band selection (CTOIFBS)
constraint representation
convolutional neural network
data augmentation
data fusion
deep convolutional neural networks
deep learning
denoising
emissivity
evolutionary computation
FTIR
fused features
generative adversarial network
heuristic algorithms
hyperspectral
hyperspectral image
hyperspectral image classification
hyperspectral image few-shot classification
hyperspectral image super-resolution
hyperspectral imagery
hyperspectral imagery classification
hyperspectral images
hyperspectral imaging
hyperspectral imaging (HSI)
hyperspectral imaging data
hyperspectral reconstruction
hyperspectral remote sensing
hyperspectral target detection
hyperspectral unmixing
image classification
image fusion
insect damage
joint tensor decomposition
least square estimation
lightweight convolutional neural networks
machine learning
meta-learning
midwave infrared
mine environment
moving target detection
multi-source image fusion
multiscale decision fusion
multispectral image
MWIR
nonlinear unmixing
plug-and-play
relation network
residual augmented attentional u-shape network
rice
rice leaf blast
rice leaf folder
self-supervised learning
self-supervised training
separation
SFIM
spatial augmented attention
spatial filter
spatial measurement
spatio-temporal processing
spectral reconstruction
spectral-spatial residual network
superpixel segmentation
target detection
temperature
transfer learning
underwater hyperspectral target detection
underwater spectral imaging system
unmanned aerial vehicles (UAVs)
upland swamps
vegetation
vegetation mapping
visualization
ISBN 3-0365-5796-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782203321
Chang Chein-I  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in hyperspectral image processing techniques / / edited by Chein-I Chang
Advances in hyperspectral image processing techniques / / edited by Chein-I Chang
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Descrizione fisica 1 online resource (611 pages)
Disciplina 771
Collana IEEE Press
Soggetto topico Hyperspectral imaging
Image processing
ISBN 1-119-68778-0
1-119-68775-6
1-119-68777-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Editor Biography -- List of Contributors -- Preface -- Part I General Theory -- Chapter 1 Introduction: Two Fundamental Principles Behind Hyperspectral Imaging -- 1.1 Introduction -- 1.2 Why Is Hyperspectral Imaging? -- 1.3 Two Principles for Hyperspectral Imaging -- 1.3.1 Pigeon-Hole Principle -- 1.3.2 Orthogonality Principle -- 1.4 What Are the Issues of Hyperspectral Imaging? -- 1.5 Determination of p by Virtual Dimensionality via Pigeon-Hole Principle -- 1.6 Order Determination of Low Rank and Sparse Matrices by Virtual Dimensionality via Pigeon-Hole Principle -- 1.7 Band Selection by Pigeon-Hole Principle -- 1.8 Band Selection by a Hyperspectral Band Channel via Pigeon-Hole Principle -- 1.9 Band Sampling via Pigeon-Hole Principle -- 1.10 Spectral Unmixing via Orthogonality Principle -- 1.11 Target Detection by Orthogonality Principle -- 1.11.1 ATGP -- 1.11.1.1 Automatic Target Generation Process (ATGP) -- 1.11.2 Constrained Energy Minimization (CEM) -- 1.12 Anomaly Detection by Orthogonality Principle -- 1.13 Endmember Finding by Orthogonality Principle -- 1.13.1 Pixel Purity Index (PPI) -- 1.13.2 Vertex Component Analysis (VCA) -- 1.13.3 Simplex Growing Algorithm (SGA) -- 1.14 Low Rank and Sparse Representation by OSP via Orthogonality Principle -- 1.15 Hyperspectral Classification -- 1.15.1 Hyperspectral Mixed Pixel Classification (HMPC) -- 1.15.2 Number of Sampled Bands Lower Than Number of Classes -- 1.15.3 Potential and Promise of Band Sampling in HMPC -- 1.16 Conclusion -- References -- Chapter 2 Overview of Hyperspectral Imaging Remote Sensing from Satellites -- 2.1 Hyperspectral Imaging Remote Sensing from Airplanes to Satellites -- 2.1.1 History of Development of Airborne Hyperspectral Imagers.
2.1.2 Early Development of Spaceborne Hyperspectral Imagers -- 2.2 Development of Spaceborne Hyperspectral Imagers in the Last Two Decades -- 2.2.1 Survey of Spaceborne Hyperspectral Imagers -- Acronyms List -- 2.2.2 Brief Description of Spaceborne Hyperspectral Imagers -- 2.2.2.1 Visible Imagers and Spectrographic Imagers (UVISI) Onboard the MSX Satellite -- 2.2.2.2 HyperSpectral Imager (HSI) for the LEWIS Mission -- 2.2.2.3 MODIS Onboard Terra and Aqua Satellites -- 2.2.2.4 Hyperion Onboard NASA's EO-1 Satellite -- 2.2.2.5 CHRIS Onboard ESA's PROBA Satellite -- 2.2.2.6 MERIS Onboard ESA's ENVISAT Satellite -- 2.2.2.7 VIRTIS for ESA's Rosetta, Venus-Express, and NASA-Dawn Planetary Missions -- 2.2.2.8 CRISM Aboard Mars Reconnaissance Orbiter -- 2.2.2.9 Moon Mineralogy Mapper for Mapping Lunar Surface -- 2.2.2.10 Fourier Transform Hyperspectral Imager Onboard Chinese Environment Satellite -- 2.2.2.11 HySI Onboard Indian Mini Satellite-1 -- 2.2.2.12 ARTEMIS Onboard TacSat-3 -- 2.2.2.13 HICO Onboard the International Space Station -- 2.2.2.14 Visible and Near-infrared Imaging Spectrometer Aboard Chang'E 3 Spacecraft -- 2.2.2.15 Ocean and Land Color Imager (OLCI) on Sentinel-3A -- 2.2.2.16 Miniature High-Resolution Imaging Spectrometer on GHGSat-D -- 2.2.2.17 Aalto-1 Spectral Imager .(AaSI) on a 3U Nanosatellite -- 2.2.2.18 DLR Earth Sensing Imaging Spectrometer on the International Space Station -- 2.2.2.19 HyperScout Hyperspectral Camera on ESA's Nanosatellite GomX-4B -- 2.2.2.20 Advanced Hyperspectral Imager (AHSI) on Chinese Gaofen-5 Satellite -- 2.2.2.21 Italian Hyperspectral Satellite PRISMA -- 2.2.2.22 Hyperspectral Imager Suite Onboard the International Space Station -- 2.2.2.23 German Spaceborne Hyperspectral Imager EnMAP -- 2.2.2.24 ESA's Moons and Jupiter Imaging Spectrometer (MAJIS) -- 2.3 Conclusion.
References -- Chapter 3 Efficient Hardware Implementation for Hyperspectral Anomaly and Target Detection -- 3.1 Introduction -- 3.2 Hyperspectral Anomaly and Target Detection -- 3.2.1 DPBS-CEM -- 3.2.2 DBN-RXD -- 3.2.3 Fast-ATGP -- 3.2.4 Fast-MGD -- 3.3 Model-Based Design -- 3.3.1 What is Model-Based Design? -- 3.3.2 FPGA Development Based on MBD -- 3.3.3 Examples of IP Design Based on HLS -- 3.3.3.1 Efficient Off-Chip Storage Access IP -- 3.3.3.2 Parallel Matrix Multiplication IP -- 3.3.3.3 Matrix Dot-Product-Plus IP -- 3.3.3.4 Erosion/Dilation IP -- 3.4 System Integration Framework Design -- 3.4.1 Efficient FPGA Implementation -- 3.4.1.1 FPGA Implementation of DPBS-CEM -- 3.4.1.2 FPGA Implementation of DBN-RXD -- 3.4.1.3 FPGA Implementation of Fast-ATGP -- 3.4.1.4 FPGA Implementation of Fast-MGD -- 3.5 Experiments and Discussions -- 3.5.1 Hyperspectral Image Data Set -- 3.5.1.1 TE1 Data Set -- 3.5.1.2 HyMap Data Set -- 3.5.1.3 Airport-Beach-Urban. .(ABU) Data Set -- 3.5.1.4 Cuprite Data Set -- 3.5.1.5 San Diego Data Set -- 3.5.1.6 HYDICE Data Set -- 3.5.2 Experiments of DPBS-CEM -- 3.5.2.1 Detection Accuracy -- 3.5.2.2 Acceleration Performance -- 3.5.3 Experiments of DBN-RXD -- 3.5.3.1 Detection Accuracy -- 3.5.3.2 Acceleration Performance -- 3.5.4 Experiments of Fast-ATGP -- 3.5.4.1 Detection Accuracy -- 3.5.4.2 Results for the AVIRIS Cuprite Scene -- 3.5.5 Experiments of Fast-MGD -- 3.5.5.1 Detection Accuracy -- 3.5.5.2 Performance Evaluation -- 3.6 Conclusion -- References -- Part II Band Selection for Hyperspectral Imaging -- Chapter 4 Constrained Band Selection for Hyperspectral Imaging -- 4.1 Introduction -- 4.2 Constrained BS -- 4.2.1 Band Vector-Constrained BS -- 4.2.1.1 Band Correlation Minimization (BCM) -- 4.2.1.2 Band Dependence Minimization (BDM).
4.2.1.3 Band Correlation Constraint (BCC) -- 4.2.1.4 Band Dependence Constraint (BDC) -- 4.2.2 Band Image-Constrained BS -- 4.3 BCBS Experiments -- 4.3.1 HYDICE Data -- 4.3.1.1 Target Detection -- 4.3.1.2 Unsupervised Mixed Pixel Classification -- 4.3.2 AVIRIS Cuprite Data -- 4.4 Target-Constrained BS -- 4.4.1 Target-Constrained Band Prioritization -- 4.4.1.1 Single Band Minimum Variance Band Prioritization by TCBS -- 4.4.1.2 Leave-One-Out Maximum Variance Band Prioritization by TCBS -- 4.4.2 Constrained-Target Band Selection -- 4.4.2.1 Sequential Feed-Forward TCBS -- 4.4.2.2 Sequential Backward TCBS -- 4.5 TCBS Experiments -- 4.6 Conclusion -- References -- Chapter 5 Band Subset Selection for Hyperspectral Imaging -- 5.1 Introduction -- 5.2 Simultaneous Multiple Band Selection -- 5.3 Search Strategies for BSS -- 5.3.1 Sequential Band Subset Selection -- 5.3.2 Successive Band Subset Selection -- 5.4 Channel Capacity BSS -- 5.5 Multiple Band-Constrained Band Subset Selection -- 5.5.1 Constrained BSS (CBSS) -- 5.5.2 Search Algorithms for CBSS -- 5.5.2.1 Sequential CBSS (SQ CBSS) -- 5.5.2.2 Successive CBSS (SC CBSS) -- 5.6 Application-Specified BSS (AS-BSS) -- 5.6.1 Application to Hyperspectral Classification -- 5.6.2 LCMV Criterion for BSS -- 5.6.3 LCMV-BSS Algorithms -- 5.6.3.1 SQ LCMV-CBSS -- 5.6.3.2 SC LCMV-CBSS -- 5.7 Experiments -- 5.7.1 MBC-BSS -- 5.7.2 MTC-BSS -- 5.7.2.1 Purdue Indiana Indian Pines Scene -- 5.7.2.2 Salinas -- 5.7.2.3 ROSIS Data -- 5.8 Conclusion -- References -- Chapter 6 Progressive Band Selection Processing for Hyperspectral Image Classification -- 6.1 Introduction -- 6.2 Measures of Class Classification Priority -- 6.3 p-Ary Huffman Coding Tree Construction -- 6.4 Iterative LCMV -- 6.4.1 Linearly Constrained Minimum Variance (LCMV).
6.4.2 Iterative Linearly Constrained Minimum Variance (ILCMV) -- 6.5 Class Signature Constrained Band Prioritization-Based Band Selection -- 6.6 Progressive Band Selection -- 6.7 Classification Measures -- 6.8 Real Images to be Used for Experiments -- 6.8.1 Purdue Indiana Indian Pines -- 6.8.2 Salinas -- 6.8.3 ROSIS Data -- 6.9 Experiments -- 6.9.1 Purdue Indiana Indian Pines -- 6.9.2 Salinas -- 6.9.3 University of Pavia -- 6.10 Conclusion -- References -- Part III Compressive Sensing for Hyperspectral Imaging -- Chapter 7 Restricted Entropy and Spectrum Properties for Hyperspectral Imaging -- 7.1 Introduction -- 7.2 Compressive Sensing Review -- 7.3 Restricted Entropy Property -- 7.4 Restricted Spectrum Property -- 7.5 REP and RSP Hyperspectral Measures -- 7.6 Experiments -- 7.7 Conclusion -- References -- Chapter 8 Endmember Finding in Compressively Sensed Band Domain -- 8.1 Introduction -- 8.2 Compressive Hyperspectral Band Sensing -- 8.2.1 Compressive Sensing Framework -- 8.2.2 Compressive Sensing of Hyperspectral Bands -- 8.2.3 Universality Model -- 8.3 Simplex Volume Calculation -- 8.3.1 Simplex Volume via Singular Value Decomposition -- 8.3.2 Simplex Volume via Matrix Determinant -- 8.4 Restricted Simplex Volume Property -- 8.5 Two Sequential Algorithms for p-FINDR -- 8.5.1 SeQuential p-FINDR (SQ p-FINDR) -- 8.5.2 SuCcessive p-FINDR (SC p-FINDR) -- 8.5.3 SQ p-FINDR and SC p-FINDR in CSBD -- 8.6 Experiments -- 8.6.1 Experimental Setup -- 8.6.2 Algorithm Analysis on Experimental Data -- 8.7 Experimental Results and Discussions -- 8.7.1 SQ p-FINDR Experimental Result Analysis -- 8.7.2 SC p-FINDR Experimental Result Analysis -- 8.8 Conclusion -- References -- Chapter 9 Hyperspectral Image Classification in Compressively Sensed Band Domain -- 9.1 Introduction -- 9.2 Compressive Sensing Review.
9.2.1 Compressive Sensing Framework.
Record Nr. UNINA-9910830508903321
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral data exploitation [[electronic resource] ] : theory and applications / / edited by Chein-I Chang
Hyperspectral data exploitation [[electronic resource] ] : theory and applications / / edited by Chein-I Chang
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (442 p.)
Disciplina 526.982
621.3678
Altri autori (Persone) ChangChein-I
Soggetto topico Remote sensing
Multispectral photography
Image processing - Digital techniques
Soggetto genere / forma Electronic books.
ISBN 1-280-82243-0
9786610822430
0-470-12462-8
0-470-12461-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HYPERSPECTRAL DATA EXPLOITATION; CONTENTS; PREFACE; CONTRIBUTORS; 1. OVERVIEW; I TUTORIALS; 2. HYPERSPECTRAL IMAGING SYSTEMS; 3. INFORMATION-PROCESSED MATCHED FILTERS FOR HYPERSPECTRAL TARGET DETECTION AND CLASSIFICATION; II THEORY; 4. AN OPTICAL REAL-TIME ADAPTIVE SPECTRAL IDENTIFICATION SYSTEM (ORASIS); 5. STOCHASTIC MIXTURE MODELING; 6. UNMIXING HYPERSPECTRAL DATA: INDEPENDENT AND DEPENDENT COMPONENT ANALYSIS; 7. MAXIMUM VOLUME TRANSFORM FOR ENDMEMBER SPECTRA DETERMINATION; 8. HYPERSPECTRAL DATA REPRESENTATION; 9. OPTIMAL BAND SELECTION AND UTILITY EVALUATION FOR SPECTRAL SYSTEMS
10. FEATURE REDUCTION FOR CLASSIFICATION PURPOSE11. SEMISUPERVISED SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES; III APPLICATIONS; 12. DECISION FUSION FOR HYPERSPECTRAL CLASSIFICATION; 13. MORPHOLOGICAL HYPERSPECTRAL IMAGE CLASSIFICATION: A PARALLEL PROCESSING PERSPECTIVE; 14. THREE-DIMENSIONAL WAVELET-BASED COMPRESSION OF HYPERSPECTRAL IMAGERY; INDEX
Record Nr. UNINA-9910143423103321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral data exploitation [[electronic resource] ] : theory and applications / / edited by Chein-I Chang
Hyperspectral data exploitation [[electronic resource] ] : theory and applications / / edited by Chein-I Chang
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (442 p.)
Disciplina 526.982
621.3678
Altri autori (Persone) ChangChein-I
Soggetto topico Remote sensing
Multispectral photography
Image processing - Digital techniques
ISBN 1-280-82243-0
9786610822430
0-470-12462-8
0-470-12461-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HYPERSPECTRAL DATA EXPLOITATION; CONTENTS; PREFACE; CONTRIBUTORS; 1. OVERVIEW; I TUTORIALS; 2. HYPERSPECTRAL IMAGING SYSTEMS; 3. INFORMATION-PROCESSED MATCHED FILTERS FOR HYPERSPECTRAL TARGET DETECTION AND CLASSIFICATION; II THEORY; 4. AN OPTICAL REAL-TIME ADAPTIVE SPECTRAL IDENTIFICATION SYSTEM (ORASIS); 5. STOCHASTIC MIXTURE MODELING; 6. UNMIXING HYPERSPECTRAL DATA: INDEPENDENT AND DEPENDENT COMPONENT ANALYSIS; 7. MAXIMUM VOLUME TRANSFORM FOR ENDMEMBER SPECTRA DETERMINATION; 8. HYPERSPECTRAL DATA REPRESENTATION; 9. OPTIMAL BAND SELECTION AND UTILITY EVALUATION FOR SPECTRAL SYSTEMS
10. FEATURE REDUCTION FOR CLASSIFICATION PURPOSE11. SEMISUPERVISED SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES; III APPLICATIONS; 12. DECISION FUSION FOR HYPERSPECTRAL CLASSIFICATION; 13. MORPHOLOGICAL HYPERSPECTRAL IMAGE CLASSIFICATION: A PARALLEL PROCESSING PERSPECTIVE; 14. THREE-DIMENSIONAL WAVELET-BASED COMPRESSION OF HYPERSPECTRAL IMAGERY; INDEX
Record Nr. UNINA-9910830729603321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral data exploitation : theory and applications / / edited by Chein-I Chang
Hyperspectral data exploitation : theory and applications / / edited by Chein-I Chang
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (442 p.)
Disciplina 526.9/82
Altri autori (Persone) ChangChein-I
Soggetto topico Remote sensing
Multispectral imaging
Image processing - Digital techniques
ISBN 9786610822430
9781280822438
1280822430
9780470124628
0470124628
9780470124611
047012461X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HYPERSPECTRAL DATA EXPLOITATION; CONTENTS; PREFACE; CONTRIBUTORS; 1. OVERVIEW; I TUTORIALS; 2. HYPERSPECTRAL IMAGING SYSTEMS; 3. INFORMATION-PROCESSED MATCHED FILTERS FOR HYPERSPECTRAL TARGET DETECTION AND CLASSIFICATION; II THEORY; 4. AN OPTICAL REAL-TIME ADAPTIVE SPECTRAL IDENTIFICATION SYSTEM (ORASIS); 5. STOCHASTIC MIXTURE MODELING; 6. UNMIXING HYPERSPECTRAL DATA: INDEPENDENT AND DEPENDENT COMPONENT ANALYSIS; 7. MAXIMUM VOLUME TRANSFORM FOR ENDMEMBER SPECTRA DETERMINATION; 8. HYPERSPECTRAL DATA REPRESENTATION; 9. OPTIMAL BAND SELECTION AND UTILITY EVALUATION FOR SPECTRAL SYSTEMS
10. FEATURE REDUCTION FOR CLASSIFICATION PURPOSE11. SEMISUPERVISED SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES; III APPLICATIONS; 12. DECISION FUSION FOR HYPERSPECTRAL CLASSIFICATION; 13. MORPHOLOGICAL HYPERSPECTRAL IMAGE CLASSIFICATION: A PARALLEL PROCESSING PERSPECTIVE; 14. THREE-DIMENSIONAL WAVELET-BASED COMPRESSION OF HYPERSPECTRAL IMAGERY; INDEX
Record Nr. UNINA-9911019937403321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral data processing : algorithm design and analysis / / Chein-I Chang
Hyperspectral data processing : algorithm design and analysis / / Chein-I Chang
Autore Chang Chein-I
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, 2013
Descrizione fisica 1 online resource (1165 p.)
Disciplina 621.39/94
Altri autori (Persone) ChangChein-I
Soggetto topico Image processing - Digital techniques
Spectroscopic imaging
Signal processing
ISBN 9781118269787
1118269780
9781118269770
1118269772
9781299241862
1299241867
9781118269756
1118269756
Classificazione TEC015000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HYPERSPECTRAL DATA PROCESSING: Algorithm Design and Analysis; CONTENTS; PREFACE; 1 OVERVIEW AND INTRODUCTION; 1.1 Overview; 1.2 Issues of Multispectral and Hyperspectral Imageries; 1.3 Divergence of Hyperspectral Imagery from Multispectral Imagery; 1.3.1 Misconception: Hyperspectral Imaging is a Natural Extension of Multispectral Imaging; 1.3.2 Pigeon-Hole Principle: Natural Interpretation of Hyperspectral Imaging; 1.4 Scope of This Book; 1.5 Book's Organization; 1.5.1 Part I: Preliminaries; 1.5.2 Part II: Endmember Extraction; 1.5.3 Part III: Supervised Linear Hyperspectral Mixture Analysis
1.5.4 Part IV: Unsupervised Hyperspectral Analysis 1.5.5 Part V: Hyperspectral Information Compression; 1.5.6 Part VI: Hyperspectral Signal Coding; 1.5.7 Part VII: Hyperspectral Signal Feature Characterization; 1.5.8 Applications; 1.5.8.1 Chapter 30: Applications of Target Detection; 1.5.8.2 Chapter 31: Nonlinear Dimensionality Expansion to Multispectral Imagery; 1.5.8.3 Chapter 32: Multispectral Magnetic Resonance Imaging; 1.6 Laboratory Data to be Used in This Book; 1.6.1 Laboratory Data; 1.6.2 Cuprite Data; 1.6.3 NIST/EPA Gas-Phase Infrared Database
1.7 Real Hyperspectral Images to be Used in this Book 1.7.1 AVIRIS Data; 1.7.1.1 Cuprite Data; 1.7.1.2 Purdue's Indiana Indian Pine Test Site; 1.7.2 HYDICE Data; 1.8 Notations and Terminologies to be Used in this Book; I: PRELIMINARIES; 2 FUNDAMENTALS OF SUBSAMPLE AND MIXED SAMPLE ANALYSES; 2.1 Introduction; 2.2 Subsample Analysis; 2.2.1 Pure-Sample Target Detection; 2.2.2 Subsample Target Detection; 2.2.2.1 Adaptive Matched Detector (AMD); 2.2.2.2 Adaptive Subspace Detector (ASD); 2.2.3 Subsample Target Detection: Constrained Energy Minimization (CEM); 2.3 Mixed Sample Analysis
2.3.1 Classification with Hard Decisions 2.3.1.1 Fisher's Linear Discriminant Analysis (FLDA); 2.3.1.2 Support Vector Machines (SVM); 2.3.2 Classification with Soft Decisions; 2.3.2.1 Orthogonal Subspace Projection (OSP); 2.3.2.2 Target-Constrained Interference-Minimized Filter (TCIMF); 2.4 Kernel-Based Classification; 2.4.1 Kernel Trick Used in Kernel-Based Methods; 2.4.2 Kernel-Based Fisher's Linear Discriminant Analysis (KFLDA); 2.4.3 Kernel Support Vector Machine (K-SVM); 2.5 Conclusions; 3 THREE-DIMENSIONAL RECEIVER OPERATING CHARACTERISTICS (3D ROC) ANALYSIS; 3.1 Introduction
3.2 Neyman-Pearson Detection Problem Formulation 3.3 ROC Analysis; 3.4 3D ROC Analysis; 3.5 Real Data-Based ROC Analysis; 3.5.1 How to Generate ROC Curves from Real Data; 3.5.2 How to Generate Gaussian-Fitted ROC Curves; 3.5.3 How to Generate 3D ROC Curves; 3.5.4 How to Generate 3D ROC Curves for Multiple Signal Detection and Classification; 3.6 Examples; 3.6.1 Hyperspectral Imaging; 3.6.1.1 Hyperspectral Target Detection; 3.6.1.2 Linear Hyperspectral Mixture Analysis; 3.6.2 Magnetic Resonance (MR) Breast Imaging; 3.6.2.1 Breast Tumor Detection; 3.6.2.2 Brain Tissue Classification
3.6.3 Chemical/Biological Agent Detection
Record Nr. UNINA-9910141611003321
Chang Chein-I  
Hoboken, N.J., : Wiley-Interscience, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hyperspectral Imaging and Applications
Hyperspectral Imaging and Applications
Autore Chang Chein-I
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (632 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato 90° yaw imaging
adaptive window
Africa
agroforestry
AHS
airborne laser scanning
algebraic multigrid methods
anomaly detection
AVIRIS
band expansion process (BEP)
band grouping
band selection
band selection (BS)
band subset selection (BSS)
biodiversity
class imbalance
classification
composite kernel
constrained energy minimization
constrained energy minimization (CEM)
correlation band expansion process (CBEP)
data fusion
data integration
data unmixing
data-guided constraints
deep belief networks
deep learning
deep pipelined background statistics
Dunhuang site
endmember extraction
ensemble learning
evenness
fire severity
Gram-Schmidt orthogonalization
graph
hashing ensemble
hierarchical feature
high-level synthesis
HyMap
hyperspectral
hyperspectral classification
hyperspectral compression
hyperspectral detection
hyperspectral image
hyperspectral image (HSI)
hyperspectral image classification
hyperspectral imagery
hyperspectral images (HSIs)
hyperspectral imaging
hyperspectral pansharpening
hyperspectral unmixing
image enhancement
image fusion
imaging spectroscopy
in situ measurements
intrinsic image decomposition
irradiance-based method
iterative algorithm
iterative CEM (ICEM)
KSVD
label propagation
linearly constrained minimum variance (LCMV)
local abundance
local summation RX detector (LS-RXD)
lossy compression
machine learning
mineral mapping
minimum noise fraction
multiscale spatial information
multiscale union regions adaptive sparse representation (MURASR)
nonlinear band expansion (NBE)
nonnegative matrix factorization
nuclear norm
on-board compression
optical spectral region
orthogonal projections
Otsu's method
panchromatic
panchromatic image
parallel processing
peatland
progressive sample processing (PSP)
prototype space
raw material
real-time processing
recursive anomaly detection
reflectance-based method
remote sensing
rolling guidance filtering (RGF)
rotation forest
semi-supervised learning
semi-supervised local discriminant analysis
sequential LCMV-BSS (SQ LCMV-BSS)
sliding window
sparse coding
sparse unmixing
sparseness
spectral mixture analysis
spectral variability
spectral-spatial classification
sprout detection
structure tensor
successive LCMV-BSS (SC LCMV-BSS)
superpixel
SVM
target detection
terrestrial hyperspectral imaging
texture feature enhancement
thermal infrared spectral region
tree species
tree-based ensemble
vegetation type
vicarious calibration
vineyard
water stress
weighted fusion
weighted least squares filter
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585941603321
Chang Chein-I  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui