top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Hydrologic Forecasts and Water Resources Management
Advances in Hydrologic Forecasts and Water Resources Management
Autore Chang Fi-John
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (272 p.)
Soggetto topico Research & information: general
Soggetto non controllato water resources management
landslide
dammed lake
flood risk
time-varying parameter
GR4J model
changing environments
temporal transferability
western China
cascade hydropower reservoirs
multi-objective optimization
TOPSIS
gravitational search algorithm
opposition learning
partial mutation
elastic-ball modification
Snowmelt Runoff Model
parameter uncertainty
data-scarce deglaciating river basin
climate change impacts
generalized likelihood uncertainty estimation
Yangtze River
cascade reservoirs
impoundment operation
GloFAS-Seasonal
forecast evaluation
small and medium-scale rivers
highly urbanized area
flood control
whole region perspective
coupled models
flood-risk map
hydrodynamic modelling
Sequential Gaussian Simulation
urban stormwater
probabilistic forecast
Unscented Kalman Filter
artificial neural networks
Three Gorges Reservoir
Mahalanobis-Taguchi System
grey entropy method
signal-to-noise ratio
degree of balance and approach
interval number
multi-objective optimal operation model
feasible search space
Pareto-front optimal solution set
loss–benefit ratio of ecology and power generation
elasticity coefficient
empirical mode decomposition
Hushan reservoir
data synthesis
urban hydrological model
Generalized Likelihood Uncertainty Estimation (GLUE)
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
uncertainty analysis
NDVI
Yarlung Zangbo River
machine learning model
random forest
Internet of Things (IoT)
regional flood inundation depth
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
artificial intelligence
machine learning
multi-objective reservoir operation
hydrologic forecasting
uncertainty
risk
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557110703321
Chang Fi-John  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flood Forecasting Using Machine Learning Methods
Flood Forecasting Using Machine Learning Methods
Autore Chang Fi-John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (376 p.)
Soggetto non controllato natural hazards &
artificial neural network
flood routing
the Three Gorges Dam
backtracking search optimization algorithm (BSA)
lag analysis
artificial intelligence
classification and regression trees (CART)
decision tree
real-time
optimization
ensemble empirical mode decomposition (EEMD)
improved bat algorithm
convolutional neural networks
ANFIS
method of tracking energy differences (MTED)
adaptive neuro-fuzzy inference system (ANFIS)
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
disasters
flood prediction
ANN-based models
flood inundation map
ensemble machine learning
flood forecast
sensitivity
hydrologic models
phase space reconstruction
water level forecast
data forward prediction
early flood warning systems
bees algorithm
random forest
uncertainty
soft computing
data science
hydrometeorology
LSTM
rating curve method
forecasting
superpixel
particle swarm optimization
high-resolution remote-sensing images
machine learning
support vector machine
Lower Yellow River
extreme event management
runoff series
empirical wavelet transform
Muskingum model
hydrograph predictions
bat algorithm
data scarce basins
Wilson flood
self-organizing map
big data
extreme learning machine (ELM)
hydroinformatics
nonlinear Muskingum model
invasive weed optimization
rainfall–runoff
flood forecasting
artificial neural networks
flash-flood
streamflow predictions
precipitation-runoff
the upper Yangtze River
survey
parameters
Haraz watershed
ANN
time series prediction
postprocessing
flood susceptibility modeling
rainfall-runoff
deep learning
database
LSTM network
ensemble technique
hybrid neural network
self-organizing map (SOM)
data assimilation
particle filter algorithm
monthly streamflow forecasting
Dongting Lake
machine learning methods
micro-model
stopping criteria
Google Maps
cultural algorithm
wolf pack algorithm
flood events
urban water bodies
Karahan flood
St. Venant equations
hybrid &
hydrologic model
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346688303321
Chang Fi-John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui