Ferroelectrics : principles and applications / / Ashim Kumar Bain, Prem Chand |
Autore | Bain Ashim Kumar |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2017] |
Descrizione fisica | 1 online resource (415 pages) : illustrations |
Disciplina | 537.2448 |
Collana | THEi Wiley ebooks |
Soggetto topico | Ferroelectric crystals |
ISBN |
3-527-80540-0
3-527-80533-8 3-527-80531-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Dielectric properties of materials -- Microscopic properties of materials -- Pyroelectricity and piezoelectricity -- Ferroelectricity -- Ferroelectric ceramics: devices and applications. |
Record Nr. | UNINA-9910163133603321 |
Bain Ashim Kumar | ||
Weinheim, Germany : , : Wiley-VCH, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Ferroelectrics : principles and applications / / Ashim Kumar Bain, Prem Chand |
Autore | Bain Ashim Kumar |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2017] |
Descrizione fisica | 1 online resource (415 pages) : illustrations |
Disciplina | 537.2448 |
Collana | THEi Wiley ebooks |
Soggetto topico | Ferroelectric crystals |
ISBN |
3-527-80540-0
3-527-80533-8 3-527-80531-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Dielectric properties of materials -- Microscopic properties of materials -- Pyroelectricity and piezoelectricity -- Ferroelectricity -- Ferroelectric ceramics: devices and applications. |
Record Nr. | UNINA-9910822183403321 |
Bain Ashim Kumar | ||
Weinheim, Germany : , : Wiley-VCH, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pyroelectric Materials : Physics and Applications |
Autore | Bain Ashim Kumar |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (257 pages) |
Altri autori (Persone) | ChandPrem |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-83974-7
3-527-83972-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Fundamentals of Dielectrics -- 1.1 Dielectrics -- 1.1.1 Polarization of Dielectrics -- 1.1.2 Dispersion of Dielectric Polarization -- 1.1.2.1 Electronic Polarization -- 1.1.2.2 Ionic Polarization -- 1.1.2.3 Orientation Polarization -- 1.1.2.4 Space Charge Polarization -- 1.1.3 Dielectric Relaxation -- 1.1.4 Debye Relaxation -- 1.1.5 Molecular Theory of Induced Charges in a Dielectric -- 1.1.6 Capacitance of a Parallel Plate Capacitor -- 1.1.7 Electric Displacement Field, Dielectric Constant, and Electric Susceptibility -- 1.1.8 Local Field in a Dielectric -- 1.1.8.1 Lorentz Field, E2 -- 1.1.8.2 Field of Dipoles Inside Cavity, E3 -- 1.1.9 Dielectrics Losses -- 1.1.9.1 Dielectric Loss Angle -- 1.1.9.2 Total and Specific Dielectric Losses -- 1.1.10 Dielectrics Breakdown -- References -- Chapter 2 Pyroelectricity -- 2.1 Introduction -- 2.2 History of Pyroelectricity -- 2.3 Theory of Pyroelectricity -- 2.4 Simple Model of Pyroelectric Effect -- 2.5 Pyroelectric Crystal Symmetry -- 2.6 Piezoelectricity -- 2.7 Ferroelectricity -- 2.7.1 Ferroelectric Phase Transitions -- 2.7.2 Ferroelectric Domains -- 2.7.3 Ferroelectric Domain Wall Motion -- 2.7.4 Soft Mode -- 2.7.4.1 Zone‐center Phonons -- 2.7.4.2 Zone‐boundary Phonons -- References -- Chapter 3 Pyroelectric Materials and Applications -- 3.1 Introduction -- 3.2 Theory of Pyroelectric Detectors -- 3.3 Material Figure‐of‐Merits -- 3.4 Classification of Pyroelectric Materials -- 3.4.1 Single Crystals -- 3.4.1.1 Triglycine Sulphate -- 3.4.1.2 Lithium Tantalate (LT) and Lithium Niobate (LN) -- 3.4.1.3 Barium Strontium Titanate (BST) -- 3.4.1.4 Strontium Barium Niobite (SBN) -- 3.4.2 Perovskite Ceramics -- 3.4.2.1 Modified Lead Zirconate (PZ) -- 3.4.2.2 Modified Lead Titanate (PT) -- 3.4.3 Organic Polymers.
3.4.4 Ceramic‐Polymer Composites -- 3.4.5 Lead‐Free Ceramics -- 3.4.6 Other Pyroelectric Materials -- 3.4.6.1 Aluminum Nitride (AlN) -- 3.4.6.2 Gallium Nitride (GaN) -- 3.4.6.3 Zinc Oxide (ZnO) -- References -- Chapter 4 Pyroelectric Infrared Detector -- 4.1 Introduction -- 4.2 Device Configurations -- 4.2.1 Thick Film Detectors -- 4.2.2 Thin Film Detectors -- 4.2.3 Hybrid Focal Plane Array Detector -- 4.2.4 Linear Array Detector -- 4.2.4.1 Detector Chip Technology -- 4.2.4.2 Detector Assembly -- 4.2.4.3 Camera System -- 4.2.5 Periodic Domain TFLT™ Detector -- 4.2.5.1 TFLT™ Pyroelectric Detector Fabrication -- 4.2.5.2 TFLT™ Attached to Metalized Silicon -- 4.2.5.3 TFLT™ on Ceramic -- 4.2.5.4 Large Aperture Devices -- 4.2.5.5 Domain Engineered TFLT™ Device -- 4.2.6 Terahertz Thermal Detector -- 4.2.7 PVDF Polymer Detector -- 4.2.7.1 Self‐absorbing Layer Structure -- 4.2.7.2 PVDF Pyroelectric Sensor Assembly -- 4.2.7.3 Sensor Array Specification and Performance -- 4.2.8 TFP Polymer Detector -- 4.2.9 Tetraaminodiphenyl (TADPh) Polymer Detector -- 4.2.9.1 Detector Design -- 4.2.9.2 Detector Sensitivity -- 4.2.10 Integrated Resonant Absorber Pyroelectric Detector -- 4.2.10.1 Detector Design -- 4.2.10.2 Detector Sensitivity -- 4.2.11 Resonant IR Detector -- 4.2.11.1 Principles of Operation of Resonant Detector -- 4.2.11.2 IR Absorbing Coatings and Structures -- 4.2.11.3 Differential Operation and Detector Arrays -- 4.2.11.4 Performance of GaN Resonators -- 4.2.12 Plasmonic IR Detector -- 4.2.12.1 Structure Design -- 4.2.12.2 Fabrication and Performance of the Detector -- 4.2.13 Graphene Pyroelectric Bolometer -- 4.2.13.1 Device Architecture -- 4.2.13.2 Device Performance -- References -- Chapter 5 Pyroelectric Energy Harvesting -- 5.1 Introduction -- 5.2 Theory of Pyroelectric Energy Harvesting -- 5.3 Pyroelectricity in Ferroelectric Materials. 5.3.1 Thermodynamic Cycles of PyEH -- 5.3.1.1 Carnot Cycle -- 5.3.1.2 Ericsson Cycle -- 5.3.1.3 Olsen Cycle -- 5.4 Pyroelectric Generators -- 5.5 Pyroelectric Nanogenerators -- 5.5.1 Polymer‐Based Pyroelectric Nanogenerators -- 5.5.1.1 PyNGs Driven by Various Environmental Conditions -- 5.5.1.2 Development of Pyroelectric Materials -- 5.5.1.3 Wearable Pyroelectric Nanogenerators -- 5.5.1.4 Hybrid Pyroelectric Nanogenerators -- 5.5.2 Ceramic‐Based Pyroelectric Nanogenerators -- 5.5.2.1 ZnO‐Based Pyroelectric Nanogenerators -- 5.5.2.2 PZT‐Based Pyroelectric Nanogenerators -- 5.5.2.3 Lead‐Free Ceramic‐Based Pyroelectric Nanogenerators -- 5.5.3 Thermal Nanophotonic‐Pyroelectric Nanogenerators -- 5.5.4 Challenges and Perspectives of Pyroelectric Nanogenerators -- References -- Chapter 6 Pyroelectric Fusion -- 6.1 Introduction -- 6.2 History of Pyroelectric Fusion -- 6.3 Pyroelectric Neutron Generators -- 6.4 Pyroelectric X‐ray Generators -- 6.4.1 Applications -- 6.4.2 Features -- References -- Index -- EULA. |
Record Nr. | UNINA-9910595594503321 |
Bain Ashim Kumar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Pyroelectric materials : physics and applications / / Ashim Kumar Bain, Prem Chand |
Autore | Bain Ashim Kumar |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , [2023] |
Descrizione fisica | 1 online resource (257 pages) |
Disciplina | 537.2446 |
Soggetto topico | Piezoelectric materials |
ISBN |
3-527-83974-7
3-527-83972-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Fundamentals of Dielectrics -- 1.1 Dielectrics -- 1.1.1 Polarization of Dielectrics -- 1.1.2 Dispersion of Dielectric Polarization -- 1.1.2.1 Electronic Polarization -- 1.1.2.2 Ionic Polarization -- 1.1.2.3 Orientation Polarization -- 1.1.2.4 Space Charge Polarization -- 1.1.3 Dielectric Relaxation -- 1.1.4 Debye Relaxation -- 1.1.5 Molecular Theory of Induced Charges in a Dielectric -- 1.1.6 Capacitance of a Parallel Plate Capacitor -- 1.1.7 Electric Displacement Field, Dielectric Constant, and Electric Susceptibility -- 1.1.8 Local Field in a Dielectric -- 1.1.8.1 Lorentz Field, E2 -- 1.1.8.2 Field of Dipoles Inside Cavity, E3 -- 1.1.9 Dielectrics Losses -- 1.1.9.1 Dielectric Loss Angle -- 1.1.9.2 Total and Specific Dielectric Losses -- 1.1.10 Dielectrics Breakdown -- References -- Chapter 2 Pyroelectricity -- 2.1 Introduction -- 2.2 History of Pyroelectricity -- 2.3 Theory of Pyroelectricity -- 2.4 Simple Model of Pyroelectric Effect -- 2.5 Pyroelectric Crystal Symmetry -- 2.6 Piezoelectricity -- 2.7 Ferroelectricity -- 2.7.1 Ferroelectric Phase Transitions -- 2.7.2 Ferroelectric Domains -- 2.7.3 Ferroelectric Domain Wall Motion -- 2.7.4 Soft Mode -- 2.7.4.1 Zone‐center Phonons -- 2.7.4.2 Zone‐boundary Phonons -- References -- Chapter 3 Pyroelectric Materials and Applications -- 3.1 Introduction -- 3.2 Theory of Pyroelectric Detectors -- 3.3 Material Figure‐of‐Merits -- 3.4 Classification of Pyroelectric Materials -- 3.4.1 Single Crystals -- 3.4.1.1 Triglycine Sulphate -- 3.4.1.2 Lithium Tantalate (LT) and Lithium Niobate (LN) -- 3.4.1.3 Barium Strontium Titanate (BST) -- 3.4.1.4 Strontium Barium Niobite (SBN) -- 3.4.2 Perovskite Ceramics -- 3.4.2.1 Modified Lead Zirconate (PZ) -- 3.4.2.2 Modified Lead Titanate (PT) -- 3.4.3 Organic Polymers.
3.4.4 Ceramic‐Polymer Composites -- 3.4.5 Lead‐Free Ceramics -- 3.4.6 Other Pyroelectric Materials -- 3.4.6.1 Aluminum Nitride (AlN) -- 3.4.6.2 Gallium Nitride (GaN) -- 3.4.6.3 Zinc Oxide (ZnO) -- References -- Chapter 4 Pyroelectric Infrared Detector -- 4.1 Introduction -- 4.2 Device Configurations -- 4.2.1 Thick Film Detectors -- 4.2.2 Thin Film Detectors -- 4.2.3 Hybrid Focal Plane Array Detector -- 4.2.4 Linear Array Detector -- 4.2.4.1 Detector Chip Technology -- 4.2.4.2 Detector Assembly -- 4.2.4.3 Camera System -- 4.2.5 Periodic Domain TFLT™ Detector -- 4.2.5.1 TFLT™ Pyroelectric Detector Fabrication -- 4.2.5.2 TFLT™ Attached to Metalized Silicon -- 4.2.5.3 TFLT™ on Ceramic -- 4.2.5.4 Large Aperture Devices -- 4.2.5.5 Domain Engineered TFLT™ Device -- 4.2.6 Terahertz Thermal Detector -- 4.2.7 PVDF Polymer Detector -- 4.2.7.1 Self‐absorbing Layer Structure -- 4.2.7.2 PVDF Pyroelectric Sensor Assembly -- 4.2.7.3 Sensor Array Specification and Performance -- 4.2.8 TFP Polymer Detector -- 4.2.9 Tetraaminodiphenyl (TADPh) Polymer Detector -- 4.2.9.1 Detector Design -- 4.2.9.2 Detector Sensitivity -- 4.2.10 Integrated Resonant Absorber Pyroelectric Detector -- 4.2.10.1 Detector Design -- 4.2.10.2 Detector Sensitivity -- 4.2.11 Resonant IR Detector -- 4.2.11.1 Principles of Operation of Resonant Detector -- 4.2.11.2 IR Absorbing Coatings and Structures -- 4.2.11.3 Differential Operation and Detector Arrays -- 4.2.11.4 Performance of GaN Resonators -- 4.2.12 Plasmonic IR Detector -- 4.2.12.1 Structure Design -- 4.2.12.2 Fabrication and Performance of the Detector -- 4.2.13 Graphene Pyroelectric Bolometer -- 4.2.13.1 Device Architecture -- 4.2.13.2 Device Performance -- References -- Chapter 5 Pyroelectric Energy Harvesting -- 5.1 Introduction -- 5.2 Theory of Pyroelectric Energy Harvesting -- 5.3 Pyroelectricity in Ferroelectric Materials. 5.3.1 Thermodynamic Cycles of PyEH -- 5.3.1.1 Carnot Cycle -- 5.3.1.2 Ericsson Cycle -- 5.3.1.3 Olsen Cycle -- 5.4 Pyroelectric Generators -- 5.5 Pyroelectric Nanogenerators -- 5.5.1 Polymer‐Based Pyroelectric Nanogenerators -- 5.5.1.1 PyNGs Driven by Various Environmental Conditions -- 5.5.1.2 Development of Pyroelectric Materials -- 5.5.1.3 Wearable Pyroelectric Nanogenerators -- 5.5.1.4 Hybrid Pyroelectric Nanogenerators -- 5.5.2 Ceramic‐Based Pyroelectric Nanogenerators -- 5.5.2.1 ZnO‐Based Pyroelectric Nanogenerators -- 5.5.2.2 PZT‐Based Pyroelectric Nanogenerators -- 5.5.2.3 Lead‐Free Ceramic‐Based Pyroelectric Nanogenerators -- 5.5.3 Thermal Nanophotonic‐Pyroelectric Nanogenerators -- 5.5.4 Challenges and Perspectives of Pyroelectric Nanogenerators -- References -- Chapter 6 Pyroelectric Fusion -- 6.1 Introduction -- 6.2 History of Pyroelectric Fusion -- 6.3 Pyroelectric Neutron Generators -- 6.4 Pyroelectric X‐ray Generators -- 6.4.1 Applications -- 6.4.2 Features -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830933003321 |
Bain Ashim Kumar | ||
Weinheim, Germany : , : Wiley-VCH, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|