Efficient data handling for massive Internet of medical things : healthcare data analytics / / Chinmay Chakraborty [and three others] editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (398 pages) |
Disciplina | 610.285 |
Collana | Internet of Things |
Soggetto topico |
Medical informatics
Internet in medicine Internet of things |
ISBN | 3-030-66633-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910495252003321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Efficient data handling for massive Internet of medical things : healthcare data analytics / / Chinmay Chakraborty [and three others] editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (398 pages) |
Disciplina | 610.285 |
Collana | Internet of Things |
Soggetto topico |
Medical informatics
Internet in medicine Internet of things |
ISBN | 3-030-66633-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996464516203316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Healthcare Informatics for Fighting COVID-19 and Future Epidemics |
Autore | Garg Lalit |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2021 |
Descrizione fisica | 1 online resource (444 pages) |
Altri autori (Persone) |
ChakrabortyChinmay
MahmoudiSaïd SohmenVictor S |
Collana | EAI/Springer Innovations in Communication and Computing Ser. |
Soggetto genere / forma | Electronic books. |
ISBN | 3-030-72752-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910497102703321 |
Garg Lalit | ||
Cham : , : Springer International Publishing AG, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The impact of the COVID-19 pandemic on green societies : environmental sustainability / / edited by Chinmay Chakraborty |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (437 pages) : illustrations |
Disciplina | 338.927 |
Soggetto topico |
Sustainable development
COVID-19 Pandemic, 2020- - Environmental aspects |
ISBN | 3-030-66490-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1 COVID-19: An Opportunity for Smart and Sustainable Cities in India -- 1.1 Introduction -- 1.2 Data Collection and Research Design -- 1.3 COVID-19: A Pandemic -- 1.3.1 Current Scenario in the World -- 1.4 Assessment of COVID-19 in India -- 1.4.1 State-Wise Analysis of COVID-19 in India -- 1.5 Smart and Sustainable Cities -- 1.5.1 Smart City Analysis -- 1.6 Issues -- 1.7 Recommendations -- 1.7.1 Personal and Non-personal Data -- 1.7.2 Digital Model -- 1.8 Conclusion -- References -- 2 Reassessment of Urban Sustainability and Food Security in the Light of COVID-19 -- 2.1 Introduction -- 2.2 Covid-19 Situation and the Urban Scenario -- 2.3 Urban Sustainability: Issues and Perspectives -- 2.3.1 Eco-City -- 2.3.2 Smart City -- 2.3.3 Sustainable City -- 2.3.4 Green City -- 2.3.5 Self-reliant City -- 2.3.6 Continuing Metropolitan Mayhem -- 2.4 Urban Pantry: A Saga of Neglect -- 2.5 Cities and Food Resource -- 2.5.1 Food Security -- 2.5.2 Globalisation and Urbanisation -- 2.5.3 Paradigm Shift -- 2.6 Role of Urban Agriculture in Delivering Results -- 2.7 Tackling the Menace of COVID-19 -- 2.8 Conclusion -- References -- 3 Disruptive Mobility in Pre- and Post-COVID Times: App-Based Shared Mobility in Indian Cities-The Case of Bengaluru -- 3.1 Introduction -- 3.1.1 Disruptive Mobility -- 3.1.2 Worldwide Scenario of Disruptive Mobility -- 3.1.3 Disruptive Mobility in India -- 3.2 Problem Statement -- 3.3 Methodology -- 3.3.1 Data Collection -- 3.3.2 Carbon Emission Due to Congestion -- 3.3.3 Public Transport Accessibility Level (PTAL) -- 3.4 Bengaluru: The Case Study -- 3.4.1 City Profile and Institutional Structure -- 3.4.2 Transportation in BBMP -- 3.4.3 Bangalore Metropolitan Transport Corporation (BMTC) -- 3.4.4 Bengaluru Metro Rail Corporation Limited (BMRCL) -- 3.5 Data Analysis and Discussion.
3.5.1 Travel Preferences for Work and Recreational Trips -- 3.5.2 Cost of Additional Carbon Emissions Due to Congestion -- 3.5.3 Relation Between Yearly Uber Rides and PTAL Map -- 3.5.4 Car, a Status Symbol? -- 3.6 Post-Covid Scenario of ABSM -- 3.7 Conclusion -- 3.8 Future Work -- References -- 4 Finding the Long-Lost Path: Developing Environmental Awareness Through the Pandemic -- 4.1 Introduction -- 4.2 Impact of the COVID-19 Pandemic on the Environment -- 4.3 The Relationship Between Ecosystem and Human Well-Being -- 4.4 How Can Psychology Help to Promote Sustainable Behaviour? -- 4.4.1 Culture and Pro-Environment Behaviour -- 4.4.2 Actions to Develop the Feeling of Collectivism -- 4.4.3 Creating Motivation to Change -- 4.4.4 Blocks to Sustainable Action -- 4.5 Psychosocial Model for Promoting Pro-Environmental Behaviour -- 4.6 Conclusion -- References -- 5 The Dual Impact of Lockdown on Curbing COVID-19 Spread and Rise of Air Quality Index in India -- 5.1 Introduction -- 5.2 SIQR Dynamic Model -- 5.2.1 Theoretical Framework -- 5.2.2 Estimation of Initial Transmission Rate -- 5.2.3 Simulation of Mathematical Modeling -- 5.3 Introduction to Air Pollution -- 5.4 Pollution from Different Sectors -- 5.5 Dataset Preparation -- 5.6 Understanding Basic Relationship of Pollutants with Pollution -- 5.7 Detailed Analysis -- 5.7.1 Time Series Analysis -- 5.7.2 Autoregressive Model -- 5.8 Artificial Neural Network and LSTM-Based Modeling -- 5.9 Effect of COVID-19 on Air Pollution -- 5.10 Conclusion and Future Scope -- References -- 6 Aftermath of Industrial Pollution, Post COVID-19 Quarantine on Environment -- 6.1 Introduction -- 6.2 Categories and Impact of Industrial Pollution -- 6.3 Comparison Between Pre and Active Lockdown Conditions -- 6.3.1 Air Pollution -- 6.3.2 Water Pollution -- 6.3.3 Revamped Noise and Soil Pollution. 6.4 Effect of Revived Pollution Level on Existing Life Forms and Mother Earth -- 6.5 Conclusion -- 6.6 Future Prospects -- References -- 7 COVID-19: Disaster or an Opportunity for Environmental Sustainability -- 7.1 Introduction -- 7.2 Positive Impact of Coronavirus on Environment -- 7.2.1 Impact on Atmosphere (Air) -- 7.2.2 Impact on Hydrosphere [Water] -- 7.2.3 Impact on Nature and Wildlife -- 7.3 Negative Aspects of COVID-19 -- 7.4 Future Suggestions to Maintain Environmental Sustainability Post-COVID-19 -- 7.5 Conclusion -- References -- 8 COVID-19 and Its Impact on Carbon Dioxide Emissions -- 8.1 Introduction -- 8.2 Sectors Wise CO2 Emission -- 8.3 Monitoring of CO2 Emission -- 8.4 Changes in Activities During COVID-19 -- 8.5 Changes in CO2 Emission at Global Level -- 8.6 Sector Wise Changes in CO2 Emission -- 8.6.1 Power Sector -- 8.6.2 Industrial Emissions -- 8.6.3 Surface Transportation Emissions -- 8.6.4 Aviation and Ships Emissions -- 8.6.5 Public and Residential Sectors -- 8.7 Country Wise Change in CO2 Emissions -- 8.7.1 USA -- 8.7.2 Italy -- 8.7.3 China -- 8.7.4 Brazil -- 8.7.5 Spain -- 8.7.6 India -- 8.7.7 UK -- 8.7.8 Germany -- 8.7.9 Japan -- 8.7.10 Russia -- 8.7.11 France -- 8.8 Implication -- 8.9 Conclusions and Future Scope -- References -- 9 Sustainable Attainment of Solar E-waste Recycling Concerning to COVID-19 Crisis: A Review -- 9.1 Introduction -- 9.1.1 Why Solar Energy? -- 9.1.2 Impact of Covid-19 on Solar Power -- 9.1.3 The Working of Solar Panels -- 9.1.4 Photovoltaic Effect -- 9.1.5 Advantages and Disadvantages of Using Solar Panels -- 9.1.6 Types of Solar Cells -- 9.2 Materials -- 9.2.1 Solar Panels -- 9.2.2 Causes of Degradation of Solar Panels -- 9.3 Methodology -- 9.3.1 Advanced Recycling Technologies -- 9.4 Result and Discussion -- 9.4.1 Economic Benefits of Recycling -- 9.4.2 Environmental Benefits of Recycling. 9.4.3 Ecological Impact and Cost Analysis -- 9.5 Conclusion -- References -- 10 Impact of Biomedical Waste Management System on Infection Control in the Midst of COVID-19 Pandemic -- 10.1 Introduction -- 10.1.1 Biomedical Waste: Universal Problem -- 10.1.2 Types and Sources of Biomedical Waste -- 10.1.3 Levels and Analysis of Biomedical Waste -- 10.2 Biomedical Waste Management System in India and Other Countries -- 10.2.1 History and Development of Biomedical Waste Management System (BWMS) -- 10.2.2 Prominent Hallmarks of Biomedical Waste Rule 2016 in India -- 10.2.3 Global Scenario of COVID-19 Pandemic -- 10.2.4 Critical Appraisal on BWMS in India and Other Countries -- 10.2.5 Requirement of Biomedical Waste Management in Hospitals and Research Centres -- 10.3 Risk of Biomedical Waste -- 10.3.1 Biomedical Effects of COVID-19 -- 10.3.2 Understanding the Actual Status of Medical Waste -- 10.3.3 Inappropriate Biomedical Waste Disposal Quantification -- 10.3.4 Exposure and Emission of Toxic Gases During Incineration -- 10.3.5 Spread of COVID-19 Pandemic -- 10.4 Biomedical Waste Containment -- 10.4.1 Formation of Containment Vision and Missions -- 10.4.2 Medical Waste Regulations and Segregations -- 10.4.3 Restricted Access for Medical Waste -- 10.4.4 Awareness and Training to the HealthCare Professionals -- 10.4.5 Alternatives for PolyvinylChloride Products -- 10.5 Biomedical Waste Treatment -- 10.5.1 Conventional Methods -- 10.5.2 Incineration Method-Pros and Cons -- 10.5.3 Operating and Emission Standards of Incineration -- 10.5.4 Nebraska Bio-containment Unit -- 10.5.5 Controlling of Infectious COVID-19 -- 10.6 Conclusion -- References -- 11 Sludge Hygienisation-A Novel Technology for Urban Areas to Deal with Incursion of COVID-19 Viral Particles in Wastewater -- 11.1 Introduction. 11.2 Interaction Between COVID-19 Virus Particles and the Surrounding (the Host and the Environment) -- 11.3 Overview of Sludge Hygienisation Techniques-Focus on the Irradiation Treatment Technology -- 11.4 Scope for Irradiation-Based Advanced Treatment Facilities in Urban Centres: A Case Study for Bengaluru City -- 11.5 Economic Features of the Proposed Sludge Hygienisation Facility in Bengaluru with Reference to Sludge Hygienisation Plant Located at Ahmedabad -- 11.5.1 Bengaluru Scenario -- 11.6 Conclusion -- References -- 12 Trends and Innovations in Biosensors for COVID-19 Detection in Air -- 12.1 Introduction -- 12.2 Corona Virus Disease-19 (COVID-19) -- 12.3 Biosensors and Its Types -- 12.3.1 Optical Biosensor -- 12.3.2 Thermometric Biosensor -- 12.3.3 Progress of SARS-Corona Virus Disease -- 12.4 Analysis and Survey -- 12.4.1 Survey Report -- 12.5 Role of Biosensor in COVID-19 -- 12.5.1 Possible Origins of Virus -- 12.5.2 Detection of Coronavirus in Air -- 12.6 Preventive Measures -- 12.7 Conclusion -- References -- 13 IoT Based Wearable Healthcare System: Post COVID-19 -- 13.1 Introduction -- 13.2 Wearable Sensors and Devices -- 13.2.1 Flexible Wearable Physical Sensors -- 13.2.2 Flexible Wearable Chemical Sensors -- 13.2.3 Materials Used for Flexible Wearable Sensors -- 13.2.4 Techniques to Fabricate Wearable Sensors -- 13.2.5 Power Source for Wearable Sensors and Electronics -- 13.2.6 Implantable Devices for Healthcare Monitoring System -- 13.3 Internet of Things (IoT) -- 13.3.1 Network in IoT -- 13.3.2 Architecture of IoT Based Wearable Healthcare System -- 13.4 Conclusion -- References -- 14 Biodiversity Conservation: An Imperial Need in Combatting Pandemic and Healthcare Emergencies -- 14.1 Introduction -- 14.2 Synergy Between Natural Environment and Human Health -- 14.3 Impact of Worldwide Lockdown on Environment -- 14.3.1 Air Pollution. 14.3.2 Wildlife. |
Record Nr. | UNINA-9910483145703321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent healthcare : infrastructure, algorithms and management / / edited by Chinmay Chakraborty, Mohammad R. Khosravi |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (493 pages) |
Disciplina | 060 |
Soggetto topico |
Artificial intelligence - Medical applications
Intel·ligència artificial en medicina |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-8150-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Part I: Data Science in Intelligent Healthcare -- Chapter 1: Distributed and Big Health Data Processing for Remote and Ubiquitous Healthcare Services Using Blind Statistical Co... -- 1.1 Introduction -- 1.2 Blind and Content-Aware Adaptive Computing: Statistical Optimization of Image Reconstruction Filters -- 1.3 Statistical Directions on Unsupervised Medical Diagnosis -- 1.4 Conclusions -- References -- Chapter 2: Computer Techniques for Medical Image Classification: A Review -- 2.1 Introduction -- 2.1.1 Chapter Contribution -- 2.1.2 Organization of the Chapter -- 2.2 Image Modality -- 2.3 Image Preprocessing -- 2.3.1 Feature Extraction -- 2.3.2 Feature Selection -- 2.4 Image Segmentation -- 2.5 Image Classification Techniques -- 2.6 Conclusion and Future Direction -- References -- Chapter 3: Optimal Feature Selection for Computer-Aided Characterization of Tissues: Case Study of Mammograms -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 ROI Extraction Techniques -- 3.2.2 Optimization Algorithms -- 3.2.3 Feature Extraction -- 3.2.4 Evaluation of CAD System -- 3.3 Methodology -- 3.4 Results and Discussions -- 3.5 Conclusion -- References -- Chapter 4: Breast Cancer Detection Using Particle Swarm Optimization and Decision Tree Machine Learning Technique -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Methods and Materials -- 4.3.1 Dataset Description -- 4.3.2 Training and Testing Phase -- 4.3.3 Feature Selection -- 4.3.4 PSO Feature Selection -- 4.3.5 Particle Swarm Optimization -- 4.3.6 Decision Tree -- 4.3.6.1 How Does the Decision Tree Work? -- 4.3.6.2 Proposed System -- 4.3.7 Performance Evaluation -- 4.4 Results and Discussion -- 4.4.1 Results -- 4.5 Conclusion -- References -- Part II: AI in Healthcare.
Chapter 5: Accountable, Responsible, Transparent Artificial Intelligence in Ambient Intelligence Systems for Healthcare -- 5.1 Introduction to Ambient Intelligence -- 5.1.1 What Is AmI? -- 5.1.2 Why Is AmI Important? -- 5.2 Applications of AmI in Healthcare -- 5.2.1 State-of-the-Art: A Case Study -- 5.3 Challenges and Opportunities -- 5.4 Importance of Accountability, Reliability and Transparency (ART)of AI in AmI -- 5.4.1 Ethics and Accountability -- 5.4.2 Transparency -- 5.4.3 Regulation and Control -- 5.4.4 Socioeconomic Impact -- 5.4.5 Design -- 5.4.6 Responsibility -- 5.4.7 ART and AmI -- 5.5 Advancements in ART AmI -- 5.6 Conclusion and Future Work -- References -- Chapter 6: Intelligent Elderly People Fall Detection Based on Modified Deep Learning Deep Transfer Learning and IoT Using Ther... -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Proposed Methodology -- 6.3.1 Tracking -- 6.3.2 ShuffleNet -- 6.3.3 IoT Design -- 6.4 Experimental Results -- 6.5 Conclusion -- References -- Chapter 7: An Analytic Approach to Diagnose Heart Stroke Using Supervised Machine Learning Techniques -- 7.1 Introduction -- 7.2 Literature Survey -- 7.3 Machine Learning and It´s Algorithms -- 7.3.1 Regression -- 7.3.2 Classification -- 7.4 Generation of Machine Learning Models for a Given Dataset to Predict Heart Attack and a Comparative Analysis to Find which... -- 7.5 Dataset Collection -- 7.6 Data Pre-Processing -- 7.6.1 Barplot (Figs. 7.9 and 7.10): -- 7.6.2 Heatmap -- 7.7 Comparative Analysis of the Model Responses -- 7.7.1 Comparative Analysis of Accuracy of all the Six Models -- 7.7.2 ROC Curve -- 7.8 Conclusion -- References -- Chapter 8: A Predictive Analysis for Diagnosis of COVID-19, Pneumonia and Lung Cancer Using Deep Learning -- 8.1 Introduction -- 8.2 Literature Survey -- 8.3 AI in Health Care Systems -- 8.4 Neural Networks. 8.4.1 Convolutional Neural Networks (CNN) -- 8.4.1.1 Advance Architecture -- 8.4.2 VGG-16 -- 8.4.3 VGG-19 -- 8.4.4 VGG-16 vs VGG-19 -- 8.5 Result Analysis -- 8.5.1 Dataset Characteristics and Analysis -- 8.5.1.1 Dataset -- 8.5.1.2 Image Pre-processing -- 8.5.1.3 Train-Test Split -- 8.5.1.4 Image Augmentation -- 8.5.2 Model Building and Analysis -- 8.5.2.1 Creating the Classifier Model Using VGG-16 -- 8.5.2.2 Fine Tuning -- 8.5.2.3 Evaluating the Model -- 8.5.3 Classification Report -- 8.5.3.1 F1 Score -- 8.5.3.2 Support -- 8.5.3.3 Confusion Matrix -- 8.5.3.4 Classification Accuracy -- 8.5.3.5 Misclassification Rate -- 8.5.3.6 Precision -- 8.5.3.7 Recall -- 8.5.3.8 F-Measure -- 8.5.4 Creating the Classifier Model Using VGG-19 -- 8.5.4.1 Fine Tuning -- 8.5.4.2 Evaluating the Model -- 8.5.4.3 Classification Matrix -- 8.5.4.4 Confusion Matrix -- 8.6 Conclusion -- References -- Part III: Privacy and Security in Healthcare -- Chapter 9: Internet of Things in the Healthcare Applications: Overview of Security and Privacy Issues -- 9.1 Introduction -- 9.1.1 The Security Attacks in IoT-Based Healthcare Applications -- 9.2 Security Requirements in IoT-Based Healthcare Applications -- 9.3 Security Solutions in IoT-Based Healthcare Applications -- 9.3.1 Fog Computing-Based Solutions -- 9.3.2 Software Defined Networking-Based Solutions -- 9.3.3 Blockchain-Based Solutions -- 9.3.4 Lightweight Cryptography-Based Solutions -- 9.3.5 Artificial Intelligence-Based Solutions -- 9.3.6 Homomorphic and Searchable Encryption-Based Solutions -- 9.4 Conclusion -- References -- Chapter 10: Secure and Privacy-Aware Intelligent Healthcare Systems: A Review -- 10.1 Introduction -- 10.1.1 Objectives -- 10.1.2 Related Works -- 10.1.3 Contributions -- 10.2 IoMT Communications -- 10.2.1 Body Area Network (BAN) -- 10.2.2 IoMT Devices and Protocols -- 10.3 Various Concerns in IoMT. 10.3.1 Security-Based Risks -- 10.3.2 Privacy-Based Risks -- 10.3.3 Trust-Based Risks -- 10.3.4 Accuracy-Based Risks -- 10.4 Challenges in IoMT -- 10.4.1 Risks in IoMT -- 10.4.2 Various Attacks against IoMT -- 10.4.3 Features of Attacks -- 10.4.4 Various Challenges in IoMT -- 10.4.4.1 Privacy Attacks -- 10.4.4.2 Sociology Attacks -- 10.4.4.3 Malicious Attacks -- 10.4.4.4 Hardware Attacks -- 10.5 Counter Measures of IoMT -- 10.5.1 Increasing Awareness -- 10.5.2 Conducting Security Awareness Program -- 10.5.3 Organizing Technical Training -- 10.5.4 Increasing the Level of Education -- 10.6 Establishing Procedures -- 10.6.1 Software Update -- 10.6.2 Setting Strong Enforcement Rules of Personal Device Regulations -- 10.6.3 Training Consideration -- 10.7 Techniques to Guarantee IoMT Data and Systems Security -- 10.7.1 Facial Recognition -- 10.7.2 Retina Scan -- 10.7.3 Iris Identification -- 10.7.4 Authentication with Many Factors -- 10.7.5 To Reduce Vulnerability, Take the Following Counter Measures -- 10.7.6 Recommended Counter Measures to Guard Against Attacks -- 10.7.7 CSRF for Healthcare Domain Internet of Things (IoT) Devices -- 10.7.8 Management of Authentication and Identity -- 10.7.9 Profiling and Access Control -- 10.7.10 Location of Storage -- 10.7.11 Encryption -- 10.7.12 Intelligent Healthcare System -- 10.8 Conclusion and Future Scope -- References -- Chapter 11: Secure Data Transfer and Provenance for Distributed Healthcare -- 11.1 IoT and Distributed Healthcare Systems -- 11.2 Trustworthiness in Healthcare Systems -- 11.3 Challenges and Opportunities -- 11.3.1 Security -- 11.3.2 Privacy -- 11.3.3 Network Infrastructure -- 11.3.4 Edge Computing -- 11.3.5 Federated Learning -- 11.4 Advances in Secure Data Transfer and Provenance for Distributed Healthcare -- 11.4.1 Exemplar State-of-the-Art IoMT -- 11.4.2 Analysis on Security. 11.4.3 Analysis on Provenance -- 11.5 Discussion -- 11.6 Conclusion and Future Work -- References -- Chapter 12: Blockchain Technology in Healthcare: Use Cases Study -- 12.1 Introduction -- 12.2 Fundamentals of Blockchain Technology -- 12.2.1 Blockchain Operations and Classifications -- 12.2.2 Smart Contracts and Ethereum Platform -- 12.2.3 Blockchain Applications -- 12.3 Blockchain for Smart Healthcare -- 12.4 Discussion and Solutions -- 12.5 Conclusion -- References -- Chapter 13: Integrating Artificial Intelligence and Blockchain for Enabling a Trusted Ecosystem for Healthcare Sector -- 13.1 Introduction -- 13.2 Background and Related Literature -- 13.2.1 Artificial Intelligence in Healthcare -- 13.2.2 Blockchain in Healthcare -- 13.3 Artificial Intelligence and Blockchain for Building a Trusted Ecosystem for Healthcare -- 13.4 Experiments and Discussions -- 13.5 Conclusions and Future Work -- References -- Part IV: Intelligent Healthcare Infrastructures -- Chapter 14: Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology -- 14.1 Introduction -- 14.1.1 Chapter Contribution -- 14.1.2 Chapter Organization -- 14.2 Data-Driven for Internet of Medical Things Technology -- 14.3 The Internet of Medical Things Applications -- 14.4 Challenges of Internet of Medical Things -- 14.4.1 Issues of Standardization -- 14.4.2 Challenges of Regulation -- 14.4.3 Cost of Infrastructures -- 14.4.4 Security Vulnerabilities Issue -- 14.4.5 Existing Networks Strain -- 14.5 Prospects of Internet of Medical Things -- 14.6 Conclusion and Future Direction -- 14.6.1 Future Direction -- References -- Chapter 15: Healthcare Infrastructure in Future Smart Cities -- 15.1 Introduction -- 15.2 Major Challenges in Healthcare Systems -- 15.2.1 Future Smart Cities and Role of Healthcare -- 15.3 Technology and Healthcare System. 15.4 Case Studies. |
Record Nr. | UNISA-996478868203316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Intelligent healthcare : infrastructure, algorithms and management / / edited by Chinmay Chakraborty, Mohammad R. Khosravi |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (493 pages) |
Disciplina | 060 |
Soggetto topico |
Artificial intelligence - Medical applications
Intel·ligència artificial en medicina |
Soggetto genere / forma | Llibres electrònics |
ISBN |
981-16-8150-3
981-16-8149-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Part I: Data Science in Intelligent Healthcare -- Chapter 1: Distributed and Big Health Data Processing for Remote and Ubiquitous Healthcare Services Using Blind Statistical Co... -- 1.1 Introduction -- 1.2 Blind and Content-Aware Adaptive Computing: Statistical Optimization of Image Reconstruction Filters -- 1.3 Statistical Directions on Unsupervised Medical Diagnosis -- 1.4 Conclusions -- References -- Chapter 2: Computer Techniques for Medical Image Classification: A Review -- 2.1 Introduction -- 2.1.1 Chapter Contribution -- 2.1.2 Organization of the Chapter -- 2.2 Image Modality -- 2.3 Image Preprocessing -- 2.3.1 Feature Extraction -- 2.3.2 Feature Selection -- 2.4 Image Segmentation -- 2.5 Image Classification Techniques -- 2.6 Conclusion and Future Direction -- References -- Chapter 3: Optimal Feature Selection for Computer-Aided Characterization of Tissues: Case Study of Mammograms -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 ROI Extraction Techniques -- 3.2.2 Optimization Algorithms -- 3.2.3 Feature Extraction -- 3.2.4 Evaluation of CAD System -- 3.3 Methodology -- 3.4 Results and Discussions -- 3.5 Conclusion -- References -- Chapter 4: Breast Cancer Detection Using Particle Swarm Optimization and Decision Tree Machine Learning Technique -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Methods and Materials -- 4.3.1 Dataset Description -- 4.3.2 Training and Testing Phase -- 4.3.3 Feature Selection -- 4.3.4 PSO Feature Selection -- 4.3.5 Particle Swarm Optimization -- 4.3.6 Decision Tree -- 4.3.6.1 How Does the Decision Tree Work? -- 4.3.6.2 Proposed System -- 4.3.7 Performance Evaluation -- 4.4 Results and Discussion -- 4.4.1 Results -- 4.5 Conclusion -- References -- Part II: AI in Healthcare.
Chapter 5: Accountable, Responsible, Transparent Artificial Intelligence in Ambient Intelligence Systems for Healthcare -- 5.1 Introduction to Ambient Intelligence -- 5.1.1 What Is AmI? -- 5.1.2 Why Is AmI Important? -- 5.2 Applications of AmI in Healthcare -- 5.2.1 State-of-the-Art: A Case Study -- 5.3 Challenges and Opportunities -- 5.4 Importance of Accountability, Reliability and Transparency (ART)of AI in AmI -- 5.4.1 Ethics and Accountability -- 5.4.2 Transparency -- 5.4.3 Regulation and Control -- 5.4.4 Socioeconomic Impact -- 5.4.5 Design -- 5.4.6 Responsibility -- 5.4.7 ART and AmI -- 5.5 Advancements in ART AmI -- 5.6 Conclusion and Future Work -- References -- Chapter 6: Intelligent Elderly People Fall Detection Based on Modified Deep Learning Deep Transfer Learning and IoT Using Ther... -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Proposed Methodology -- 6.3.1 Tracking -- 6.3.2 ShuffleNet -- 6.3.3 IoT Design -- 6.4 Experimental Results -- 6.5 Conclusion -- References -- Chapter 7: An Analytic Approach to Diagnose Heart Stroke Using Supervised Machine Learning Techniques -- 7.1 Introduction -- 7.2 Literature Survey -- 7.3 Machine Learning and It´s Algorithms -- 7.3.1 Regression -- 7.3.2 Classification -- 7.4 Generation of Machine Learning Models for a Given Dataset to Predict Heart Attack and a Comparative Analysis to Find which... -- 7.5 Dataset Collection -- 7.6 Data Pre-Processing -- 7.6.1 Barplot (Figs. 7.9 and 7.10): -- 7.6.2 Heatmap -- 7.7 Comparative Analysis of the Model Responses -- 7.7.1 Comparative Analysis of Accuracy of all the Six Models -- 7.7.2 ROC Curve -- 7.8 Conclusion -- References -- Chapter 8: A Predictive Analysis for Diagnosis of COVID-19, Pneumonia and Lung Cancer Using Deep Learning -- 8.1 Introduction -- 8.2 Literature Survey -- 8.3 AI in Health Care Systems -- 8.4 Neural Networks. 8.4.1 Convolutional Neural Networks (CNN) -- 8.4.1.1 Advance Architecture -- 8.4.2 VGG-16 -- 8.4.3 VGG-19 -- 8.4.4 VGG-16 vs VGG-19 -- 8.5 Result Analysis -- 8.5.1 Dataset Characteristics and Analysis -- 8.5.1.1 Dataset -- 8.5.1.2 Image Pre-processing -- 8.5.1.3 Train-Test Split -- 8.5.1.4 Image Augmentation -- 8.5.2 Model Building and Analysis -- 8.5.2.1 Creating the Classifier Model Using VGG-16 -- 8.5.2.2 Fine Tuning -- 8.5.2.3 Evaluating the Model -- 8.5.3 Classification Report -- 8.5.3.1 F1 Score -- 8.5.3.2 Support -- 8.5.3.3 Confusion Matrix -- 8.5.3.4 Classification Accuracy -- 8.5.3.5 Misclassification Rate -- 8.5.3.6 Precision -- 8.5.3.7 Recall -- 8.5.3.8 F-Measure -- 8.5.4 Creating the Classifier Model Using VGG-19 -- 8.5.4.1 Fine Tuning -- 8.5.4.2 Evaluating the Model -- 8.5.4.3 Classification Matrix -- 8.5.4.4 Confusion Matrix -- 8.6 Conclusion -- References -- Part III: Privacy and Security in Healthcare -- Chapter 9: Internet of Things in the Healthcare Applications: Overview of Security and Privacy Issues -- 9.1 Introduction -- 9.1.1 The Security Attacks in IoT-Based Healthcare Applications -- 9.2 Security Requirements in IoT-Based Healthcare Applications -- 9.3 Security Solutions in IoT-Based Healthcare Applications -- 9.3.1 Fog Computing-Based Solutions -- 9.3.2 Software Defined Networking-Based Solutions -- 9.3.3 Blockchain-Based Solutions -- 9.3.4 Lightweight Cryptography-Based Solutions -- 9.3.5 Artificial Intelligence-Based Solutions -- 9.3.6 Homomorphic and Searchable Encryption-Based Solutions -- 9.4 Conclusion -- References -- Chapter 10: Secure and Privacy-Aware Intelligent Healthcare Systems: A Review -- 10.1 Introduction -- 10.1.1 Objectives -- 10.1.2 Related Works -- 10.1.3 Contributions -- 10.2 IoMT Communications -- 10.2.1 Body Area Network (BAN) -- 10.2.2 IoMT Devices and Protocols -- 10.3 Various Concerns in IoMT. 10.3.1 Security-Based Risks -- 10.3.2 Privacy-Based Risks -- 10.3.3 Trust-Based Risks -- 10.3.4 Accuracy-Based Risks -- 10.4 Challenges in IoMT -- 10.4.1 Risks in IoMT -- 10.4.2 Various Attacks against IoMT -- 10.4.3 Features of Attacks -- 10.4.4 Various Challenges in IoMT -- 10.4.4.1 Privacy Attacks -- 10.4.4.2 Sociology Attacks -- 10.4.4.3 Malicious Attacks -- 10.4.4.4 Hardware Attacks -- 10.5 Counter Measures of IoMT -- 10.5.1 Increasing Awareness -- 10.5.2 Conducting Security Awareness Program -- 10.5.3 Organizing Technical Training -- 10.5.4 Increasing the Level of Education -- 10.6 Establishing Procedures -- 10.6.1 Software Update -- 10.6.2 Setting Strong Enforcement Rules of Personal Device Regulations -- 10.6.3 Training Consideration -- 10.7 Techniques to Guarantee IoMT Data and Systems Security -- 10.7.1 Facial Recognition -- 10.7.2 Retina Scan -- 10.7.3 Iris Identification -- 10.7.4 Authentication with Many Factors -- 10.7.5 To Reduce Vulnerability, Take the Following Counter Measures -- 10.7.6 Recommended Counter Measures to Guard Against Attacks -- 10.7.7 CSRF for Healthcare Domain Internet of Things (IoT) Devices -- 10.7.8 Management of Authentication and Identity -- 10.7.9 Profiling and Access Control -- 10.7.10 Location of Storage -- 10.7.11 Encryption -- 10.7.12 Intelligent Healthcare System -- 10.8 Conclusion and Future Scope -- References -- Chapter 11: Secure Data Transfer and Provenance for Distributed Healthcare -- 11.1 IoT and Distributed Healthcare Systems -- 11.2 Trustworthiness in Healthcare Systems -- 11.3 Challenges and Opportunities -- 11.3.1 Security -- 11.3.2 Privacy -- 11.3.3 Network Infrastructure -- 11.3.4 Edge Computing -- 11.3.5 Federated Learning -- 11.4 Advances in Secure Data Transfer and Provenance for Distributed Healthcare -- 11.4.1 Exemplar State-of-the-Art IoMT -- 11.4.2 Analysis on Security. 11.4.3 Analysis on Provenance -- 11.5 Discussion -- 11.6 Conclusion and Future Work -- References -- Chapter 12: Blockchain Technology in Healthcare: Use Cases Study -- 12.1 Introduction -- 12.2 Fundamentals of Blockchain Technology -- 12.2.1 Blockchain Operations and Classifications -- 12.2.2 Smart Contracts and Ethereum Platform -- 12.2.3 Blockchain Applications -- 12.3 Blockchain for Smart Healthcare -- 12.4 Discussion and Solutions -- 12.5 Conclusion -- References -- Chapter 13: Integrating Artificial Intelligence and Blockchain for Enabling a Trusted Ecosystem for Healthcare Sector -- 13.1 Introduction -- 13.2 Background and Related Literature -- 13.2.1 Artificial Intelligence in Healthcare -- 13.2.2 Blockchain in Healthcare -- 13.3 Artificial Intelligence and Blockchain for Building a Trusted Ecosystem for Healthcare -- 13.4 Experiments and Discussions -- 13.5 Conclusions and Future Work -- References -- Part IV: Intelligent Healthcare Infrastructures -- Chapter 14: Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology -- 14.1 Introduction -- 14.1.1 Chapter Contribution -- 14.1.2 Chapter Organization -- 14.2 Data-Driven for Internet of Medical Things Technology -- 14.3 The Internet of Medical Things Applications -- 14.4 Challenges of Internet of Medical Things -- 14.4.1 Issues of Standardization -- 14.4.2 Challenges of Regulation -- 14.4.3 Cost of Infrastructures -- 14.4.4 Security Vulnerabilities Issue -- 14.4.5 Existing Networks Strain -- 14.5 Prospects of Internet of Medical Things -- 14.6 Conclusion and Future Direction -- 14.6.1 Future Direction -- References -- Chapter 15: Healthcare Infrastructure in Future Smart Cities -- 15.1 Introduction -- 15.2 Major Challenges in Healthcare Systems -- 15.2.1 Future Smart Cities and Role of Healthcare -- 15.3 Technology and Healthcare System. 15.4 Case Studies. |
Record Nr. | UNINA-9910743223503321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent healthcare : infrastructure, algorithms and management / / edited by Chinmay Chakraborty, Mohammad R. Khosravi |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (493 pages) |
Disciplina | 060 |
Soggetto topico |
Artificial intelligence - Medical applications
Intel·ligència artificial en medicina |
Soggetto genere / forma | Llibres electrònics |
ISBN |
981-16-8150-3
981-16-8149-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Part I: Data Science in Intelligent Healthcare -- Chapter 1: Distributed and Big Health Data Processing for Remote and Ubiquitous Healthcare Services Using Blind Statistical Co... -- 1.1 Introduction -- 1.2 Blind and Content-Aware Adaptive Computing: Statistical Optimization of Image Reconstruction Filters -- 1.3 Statistical Directions on Unsupervised Medical Diagnosis -- 1.4 Conclusions -- References -- Chapter 2: Computer Techniques for Medical Image Classification: A Review -- 2.1 Introduction -- 2.1.1 Chapter Contribution -- 2.1.2 Organization of the Chapter -- 2.2 Image Modality -- 2.3 Image Preprocessing -- 2.3.1 Feature Extraction -- 2.3.2 Feature Selection -- 2.4 Image Segmentation -- 2.5 Image Classification Techniques -- 2.6 Conclusion and Future Direction -- References -- Chapter 3: Optimal Feature Selection for Computer-Aided Characterization of Tissues: Case Study of Mammograms -- 3.1 Introduction -- 3.2 Literature Review -- 3.2.1 ROI Extraction Techniques -- 3.2.2 Optimization Algorithms -- 3.2.3 Feature Extraction -- 3.2.4 Evaluation of CAD System -- 3.3 Methodology -- 3.4 Results and Discussions -- 3.5 Conclusion -- References -- Chapter 4: Breast Cancer Detection Using Particle Swarm Optimization and Decision Tree Machine Learning Technique -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Methods and Materials -- 4.3.1 Dataset Description -- 4.3.2 Training and Testing Phase -- 4.3.3 Feature Selection -- 4.3.4 PSO Feature Selection -- 4.3.5 Particle Swarm Optimization -- 4.3.6 Decision Tree -- 4.3.6.1 How Does the Decision Tree Work? -- 4.3.6.2 Proposed System -- 4.3.7 Performance Evaluation -- 4.4 Results and Discussion -- 4.4.1 Results -- 4.5 Conclusion -- References -- Part II: AI in Healthcare.
Chapter 5: Accountable, Responsible, Transparent Artificial Intelligence in Ambient Intelligence Systems for Healthcare -- 5.1 Introduction to Ambient Intelligence -- 5.1.1 What Is AmI? -- 5.1.2 Why Is AmI Important? -- 5.2 Applications of AmI in Healthcare -- 5.2.1 State-of-the-Art: A Case Study -- 5.3 Challenges and Opportunities -- 5.4 Importance of Accountability, Reliability and Transparency (ART)of AI in AmI -- 5.4.1 Ethics and Accountability -- 5.4.2 Transparency -- 5.4.3 Regulation and Control -- 5.4.4 Socioeconomic Impact -- 5.4.5 Design -- 5.4.6 Responsibility -- 5.4.7 ART and AmI -- 5.5 Advancements in ART AmI -- 5.6 Conclusion and Future Work -- References -- Chapter 6: Intelligent Elderly People Fall Detection Based on Modified Deep Learning Deep Transfer Learning and IoT Using Ther... -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Proposed Methodology -- 6.3.1 Tracking -- 6.3.2 ShuffleNet -- 6.3.3 IoT Design -- 6.4 Experimental Results -- 6.5 Conclusion -- References -- Chapter 7: An Analytic Approach to Diagnose Heart Stroke Using Supervised Machine Learning Techniques -- 7.1 Introduction -- 7.2 Literature Survey -- 7.3 Machine Learning and It´s Algorithms -- 7.3.1 Regression -- 7.3.2 Classification -- 7.4 Generation of Machine Learning Models for a Given Dataset to Predict Heart Attack and a Comparative Analysis to Find which... -- 7.5 Dataset Collection -- 7.6 Data Pre-Processing -- 7.6.1 Barplot (Figs. 7.9 and 7.10): -- 7.6.2 Heatmap -- 7.7 Comparative Analysis of the Model Responses -- 7.7.1 Comparative Analysis of Accuracy of all the Six Models -- 7.7.2 ROC Curve -- 7.8 Conclusion -- References -- Chapter 8: A Predictive Analysis for Diagnosis of COVID-19, Pneumonia and Lung Cancer Using Deep Learning -- 8.1 Introduction -- 8.2 Literature Survey -- 8.3 AI in Health Care Systems -- 8.4 Neural Networks. 8.4.1 Convolutional Neural Networks (CNN) -- 8.4.1.1 Advance Architecture -- 8.4.2 VGG-16 -- 8.4.3 VGG-19 -- 8.4.4 VGG-16 vs VGG-19 -- 8.5 Result Analysis -- 8.5.1 Dataset Characteristics and Analysis -- 8.5.1.1 Dataset -- 8.5.1.2 Image Pre-processing -- 8.5.1.3 Train-Test Split -- 8.5.1.4 Image Augmentation -- 8.5.2 Model Building and Analysis -- 8.5.2.1 Creating the Classifier Model Using VGG-16 -- 8.5.2.2 Fine Tuning -- 8.5.2.3 Evaluating the Model -- 8.5.3 Classification Report -- 8.5.3.1 F1 Score -- 8.5.3.2 Support -- 8.5.3.3 Confusion Matrix -- 8.5.3.4 Classification Accuracy -- 8.5.3.5 Misclassification Rate -- 8.5.3.6 Precision -- 8.5.3.7 Recall -- 8.5.3.8 F-Measure -- 8.5.4 Creating the Classifier Model Using VGG-19 -- 8.5.4.1 Fine Tuning -- 8.5.4.2 Evaluating the Model -- 8.5.4.3 Classification Matrix -- 8.5.4.4 Confusion Matrix -- 8.6 Conclusion -- References -- Part III: Privacy and Security in Healthcare -- Chapter 9: Internet of Things in the Healthcare Applications: Overview of Security and Privacy Issues -- 9.1 Introduction -- 9.1.1 The Security Attacks in IoT-Based Healthcare Applications -- 9.2 Security Requirements in IoT-Based Healthcare Applications -- 9.3 Security Solutions in IoT-Based Healthcare Applications -- 9.3.1 Fog Computing-Based Solutions -- 9.3.2 Software Defined Networking-Based Solutions -- 9.3.3 Blockchain-Based Solutions -- 9.3.4 Lightweight Cryptography-Based Solutions -- 9.3.5 Artificial Intelligence-Based Solutions -- 9.3.6 Homomorphic and Searchable Encryption-Based Solutions -- 9.4 Conclusion -- References -- Chapter 10: Secure and Privacy-Aware Intelligent Healthcare Systems: A Review -- 10.1 Introduction -- 10.1.1 Objectives -- 10.1.2 Related Works -- 10.1.3 Contributions -- 10.2 IoMT Communications -- 10.2.1 Body Area Network (BAN) -- 10.2.2 IoMT Devices and Protocols -- 10.3 Various Concerns in IoMT. 10.3.1 Security-Based Risks -- 10.3.2 Privacy-Based Risks -- 10.3.3 Trust-Based Risks -- 10.3.4 Accuracy-Based Risks -- 10.4 Challenges in IoMT -- 10.4.1 Risks in IoMT -- 10.4.2 Various Attacks against IoMT -- 10.4.3 Features of Attacks -- 10.4.4 Various Challenges in IoMT -- 10.4.4.1 Privacy Attacks -- 10.4.4.2 Sociology Attacks -- 10.4.4.3 Malicious Attacks -- 10.4.4.4 Hardware Attacks -- 10.5 Counter Measures of IoMT -- 10.5.1 Increasing Awareness -- 10.5.2 Conducting Security Awareness Program -- 10.5.3 Organizing Technical Training -- 10.5.4 Increasing the Level of Education -- 10.6 Establishing Procedures -- 10.6.1 Software Update -- 10.6.2 Setting Strong Enforcement Rules of Personal Device Regulations -- 10.6.3 Training Consideration -- 10.7 Techniques to Guarantee IoMT Data and Systems Security -- 10.7.1 Facial Recognition -- 10.7.2 Retina Scan -- 10.7.3 Iris Identification -- 10.7.4 Authentication with Many Factors -- 10.7.5 To Reduce Vulnerability, Take the Following Counter Measures -- 10.7.6 Recommended Counter Measures to Guard Against Attacks -- 10.7.7 CSRF for Healthcare Domain Internet of Things (IoT) Devices -- 10.7.8 Management of Authentication and Identity -- 10.7.9 Profiling and Access Control -- 10.7.10 Location of Storage -- 10.7.11 Encryption -- 10.7.12 Intelligent Healthcare System -- 10.8 Conclusion and Future Scope -- References -- Chapter 11: Secure Data Transfer and Provenance for Distributed Healthcare -- 11.1 IoT and Distributed Healthcare Systems -- 11.2 Trustworthiness in Healthcare Systems -- 11.3 Challenges and Opportunities -- 11.3.1 Security -- 11.3.2 Privacy -- 11.3.3 Network Infrastructure -- 11.3.4 Edge Computing -- 11.3.5 Federated Learning -- 11.4 Advances in Secure Data Transfer and Provenance for Distributed Healthcare -- 11.4.1 Exemplar State-of-the-Art IoMT -- 11.4.2 Analysis on Security. 11.4.3 Analysis on Provenance -- 11.5 Discussion -- 11.6 Conclusion and Future Work -- References -- Chapter 12: Blockchain Technology in Healthcare: Use Cases Study -- 12.1 Introduction -- 12.2 Fundamentals of Blockchain Technology -- 12.2.1 Blockchain Operations and Classifications -- 12.2.2 Smart Contracts and Ethereum Platform -- 12.2.3 Blockchain Applications -- 12.3 Blockchain for Smart Healthcare -- 12.4 Discussion and Solutions -- 12.5 Conclusion -- References -- Chapter 13: Integrating Artificial Intelligence and Blockchain for Enabling a Trusted Ecosystem for Healthcare Sector -- 13.1 Introduction -- 13.2 Background and Related Literature -- 13.2.1 Artificial Intelligence in Healthcare -- 13.2.2 Blockchain in Healthcare -- 13.3 Artificial Intelligence and Blockchain for Building a Trusted Ecosystem for Healthcare -- 13.4 Experiments and Discussions -- 13.5 Conclusions and Future Work -- References -- Part IV: Intelligent Healthcare Infrastructures -- Chapter 14: Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology -- 14.1 Introduction -- 14.1.1 Chapter Contribution -- 14.1.2 Chapter Organization -- 14.2 Data-Driven for Internet of Medical Things Technology -- 14.3 The Internet of Medical Things Applications -- 14.4 Challenges of Internet of Medical Things -- 14.4.1 Issues of Standardization -- 14.4.2 Challenges of Regulation -- 14.4.3 Cost of Infrastructures -- 14.4.4 Security Vulnerabilities Issue -- 14.4.5 Existing Networks Strain -- 14.5 Prospects of Internet of Medical Things -- 14.6 Conclusion and Future Direction -- 14.6.1 Future Direction -- References -- Chapter 15: Healthcare Infrastructure in Future Smart Cities -- 15.1 Introduction -- 15.2 Major Challenges in Healthcare Systems -- 15.2.1 Future Smart Cities and Role of Healthcare -- 15.3 Technology and Healthcare System. 15.4 Case Studies. |
Record Nr. | UNISA-996549470303316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Internet of medical things for smart healthcare : Covid-19 pandemic / / Chinmay Chakraborty [and three others], editors |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XII, 305 p. 200 illus., 177 illus. in color.) |
Disciplina | 610.285 |
Collana | Studies in big data |
Soggetto topico |
COVID-19 (Disease) - Health aspects
Medical care - Data processing Medical informatics |
ISBN | 981-15-8097-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Transmission Dynamics and Estimation of Basic Reproduction Number (R0) from Early Outbreak of Novel Coronavirus (COVID-19) in India -- Chapter 2. Covid -19 analysed by using machine deep learning -- Chapter 3. MML Classification Techniques for the pathogen based on pnuemonia-nCOVID-19 and the Detection of closely related lung diseases using Efficacious Learning Algorithms -- Chapter 4. Diagnosing COVID-19 Lung Inflammation using Machine Learning Algorithms: A Comparative Study -- Chapter 5. Factors Affecting the Success of Internet of Things for Enhancing Quality and Efficiency Implementation in Hospitals Sector in Jordan during the crises of Covid-19 -- Chapter 6. IoMT based Smart Diagnostic/Therapeutic Kit for Pandemic Patients -- Chapter 7. The Prediction Analysis of Covid-19 Cases using ARIMA and KALMAN Filter Models: A Case of Comparative Study -- Chapter 8. Exploration of cough recognition technologies grounded on sensors and artificial intelligence -- Chapter 9. A Review on use of Data Science for visualisation and prediction of the COVID-19 Pandemic and Early diagnosis of COVID-19 using Machine learning models -- Chapter 10. Fuzzy Cellular Automata Model For Discrete Dynamical System Representing Spread ofMERS And COVID-19 Virus, SumitaBasu and Sreeya Ghosh. |
Record Nr. | UNINA-9910427673103321 |
Singapore : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Internet of medical things for smart healthcare : Covid-19 pandemic / / Chinmay Chakraborty [and three others], editors |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XII, 305 p. 200 illus., 177 illus. in color.) |
Disciplina | 610.285 |
Collana | Studies in big data |
Soggetto topico |
COVID-19 (Disease) - Health aspects
Medical care - Data processing Medical informatics |
ISBN | 981-15-8097-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Transmission Dynamics and Estimation of Basic Reproduction Number (R0) from Early Outbreak of Novel Coronavirus (COVID-19) in India -- Chapter 2. Covid -19 analysed by using machine deep learning -- Chapter 3. MML Classification Techniques for the pathogen based on pnuemonia-nCOVID-19 and the Detection of closely related lung diseases using Efficacious Learning Algorithms -- Chapter 4. Diagnosing COVID-19 Lung Inflammation using Machine Learning Algorithms: A Comparative Study -- Chapter 5. Factors Affecting the Success of Internet of Things for Enhancing Quality and Efficiency Implementation in Hospitals Sector in Jordan during the crises of Covid-19 -- Chapter 6. IoMT based Smart Diagnostic/Therapeutic Kit for Pandemic Patients -- Chapter 7. The Prediction Analysis of Covid-19 Cases using ARIMA and KALMAN Filter Models: A Case of Comparative Study -- Chapter 8. Exploration of cough recognition technologies grounded on sensors and artificial intelligence -- Chapter 9. A Review on use of Data Science for visualisation and prediction of the COVID-19 Pandemic and Early diagnosis of COVID-19 using Machine learning models -- Chapter 10. Fuzzy Cellular Automata Model For Discrete Dynamical System Representing Spread ofMERS And COVID-19 Virus, SumitaBasu and Sreeya Ghosh. |
Record Nr. | UNISA-996465447203316 |
Singapore : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Internet of Things for Healthcare Technologies / / edited by Chinmay Chakraborty, Amit Banerjee, Maheshkumar H. Kolekar, Lalit Garg, Basabi Chakraborty |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (332 pages) |
Disciplina | 004.678 |
Collana | Studies in Big Data |
Soggetto topico |
Computational intelligence
Artificial intelligence Big data Health informatics Computational Intelligence Artificial Intelligence Big Data Health Informatics |
ISBN | 981-15-4112-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to Technological advances in Healthcare -- Role of Big data analysis and Bio-electronics for upgrading healthcare technologies -- Automated Epileptic Seizure Detection in Clinical EEG using Frequency-Time Domain Features and Hidden Markov Model -- ECG Data Compression for IoT in Healthcare -- Prospects of Bioelectronics (IC enabled, flexible electronics, sensors, systems etc) for Biomedical Engineering and Healthcare in the information age -- Security and Privacy concerns in Healthcare -- Internet of Medical Things -- THz Sources and Detectors for Biomedical Application -- Big data analytics for Internet of Medical Things -- Biomedical Image Analysis: A Predictive Approach -- Missing data handling in medical questionnaires using hybrid methods. |
Record Nr. | UNINA-9910484430103321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|