top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Group Theory Applied to Chemistry / / by Arnout Jozef Ceulemans
Group Theory Applied to Chemistry / / by Arnout Jozef Ceulemans
Autore Ceulemans Arnout
Edizione [2nd ed. 2024.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (352 pages)
Disciplina 541.2
Collana Theoretical Chemistry and Computational Modelling
Soggetto topico Chemistry, Physical and theoretical
Crystallography
Chemistry, Inorganic
Theoretical Chemistry
Crystallography and Scattering Methods
Inorganic Chemistry
ISBN 94-024-2245-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Operations -- Function Spaces and Matrices -- Groups -- Representations -- What has Quantum Chemistry Got to Do with It? -- Interactions -- Spherical Symmetry and Spins -- Line Groups and Plane Groups.
Record Nr. UNINA-9910847576103321
Ceulemans Arnout  
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Group Theory Applied to Chemistry / / by Arnout Jozef Ceulemans
Group Theory Applied to Chemistry / / by Arnout Jozef Ceulemans
Autore Ceulemans Arnout
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XIII, 269 p. 63 illus., 11 illus. in color.)
Disciplina 512.2
Collana Theoretical Chemistry and Computational Modelling
Soggetto topico Chemistry, Physical and theoretical
Crystallography
Chemistry, Inorganic
Theoretical and Computational Chemistry
Crystallography and Scattering Methods
Inorganic Chemistry
ISBN 94-007-6863-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Operations -- Function spaces and matrices -- Groups -- Representations -- What has quantum chemistry got to do with it? -- Interactions -- Spherical symmetry and spins.
Record Nr. UNINA-9910437799103321
Ceulemans Arnout  
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of the Jahn-Teller effect : when a boson meets a fermion / / Arnout Ceulemans
The theory of the Jahn-Teller effect : when a boson meets a fermion / / Arnout Ceulemans
Autore Ceulemans Arnout
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (429 pages)
Disciplina 530.143
Soggetto topico Interacting boson-fermion models
Jahn-Teller effect
Efecte Jahn-Teller
Bosons
Fermions
Soggetto genere / forma Llibres electrònics
ISBN 9783031095283
9783031095276
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Bosons and Fermions -- 1 The Impossible Theorem -- Contents -- 1.1 The Jahn-Teller Theorem -- 1.2 Charge Density Analysis -- 1.2.1 Occupation of dz2 -- 1.2.2 Occupation of dx2-y2 -- 1.2.3 Sum and Difference Orbitals -- 1.2.4 Orthogonal and Unitary Combinations -- 1.3 Outlook -- References -- 2 Bosons and Fermions -- Contents -- 2.1 Bosons -- 2.1.1 The Schrödinger Formalism -- 2.1.2 The Dirac Formalism -- 2.1.3 The Bargmann Mapping -- 2.2 Fermions -- 2.2.1 Fermion Operators -- 2.2.2 One-Electron Interactions -- 2.2.3 Quasi-Spin -- References -- 3 Boson-Fermion Interactions -- Contents -- 3.1 The Jahn-Teller Effect in a Triangular Molecule: A Toy Model -- 3.1.1 The Hückel Hamiltonian -- 3.1.2 Fermions: Trigonal Molecular Orbitals -- 3.1.3 Bosons: Vibrational Modes -- 3.1.4 Coupling Coefficients -- 3.2 Degeneracies and Time Reversal -- 3.2.1 Time Reversal -- 3.2.2 Irreducible Representations of the First Kind and Orthogonal Lie Groups -- 3.2.3 Irreducible Representations of the Second Kind and Symplectic Lie Groups -- 3.2.4 Irreducible Representations of the Third Kind -- 3.3 The Jahn-Teller Hamiltonian -- 3.4 Selection Rules -- 3.4.1 Space Symmetry -- 3.4.2 Time Reversal Symmetry -- 3.4.3 Hole-Particle Exchange Symmetry -- 3.5 Proof of the Jahn-Teller Theorem -- 3.5.1 History -- 3.5.2 Where Do Degeneracies Come From? -- 3.5.2.1 Cosets and the Positional Representation -- 3.5.2.2 Doubly Transitive Orbits -- 3.5.3 Degenerate Representations and Jahn-Teller Modes -- 3.5.4 Jahn-Teller Activity in Simplexes -- References -- Part II Dynamic Symmetries -- 4 The Rabi Hamiltonian -- Contents -- 4.1 The Adiabatic Potential -- 4.2 The Quantum Model -- 4.3 Bargmann Mapping of the Wave Equations -- 4.4 Eigenvalues -- 4.4.1 Classification of the Roots -- 4.4.2 Recurrence Relations and Transcendental Function.
4.4.3 The Rabi Spectrum -- 4.5 The Quantization of the Rabi Hamiltonian -- 4.6 Analyticity -- 4.7 Inversion Tunneling in Ammonia -- References -- 5 The E ×e Orbital Doublet -- Contents -- 5.1 The Quantum Model -- 5.2 Dynamic Symmetries -- 5.2.1 Boson Symmetry -- 5.2.2 Fermion Symmetry -- 5.2.3 Coupled Symmetries -- 5.3 The Canonical Form of the Wave Equation -- 5.4 Recurrence Relationships -- 5.5 Results -- 5.6 Discussion -- 5.7 Application: Na3 and the (E+A)×e Hamiltonian -- References -- 6 The Spin Quartet Γ8 ×(e+t2) System and the Symplectic Group Sp(4) -- Contents -- 6.1 Historical Note: Judd and Reik -- 6.2 The Hamiltonian -- 6.2.1 The Static Case -- 6.2.2 The Dynamic Hamiltonian -- 6.3 Sp(4) Fermion Symmetry -- 6.4 SO(5) Boson Symmetry -- 6.5 The Γ8 ×(e+t2) Dynamic Equations -- 6.6 The Γ8 ×t2 Subsystem -- 6.6.1 SO(3) Invariance -- 6.6.2 Dynamic Equations -- 6.7 Application -- 6.7.1 ReF6 -- 6.7.2 IrF6 -- References -- 7 Ansatz for the Jahn-Teller Triplet Instability -- Contents -- 7.1 SO(5) Symmetry and the Five-Dimensional Harmonic Oscillator -- 7.1.1 SU(5) ↓ SO(5) Symmetry Breaking -- 7.1.2 SO(5) ↓ SO(3) Symmetry Breaking -- 7.2 The Hamiltonian -- 7.3 The Vibrating Sphere -- 7.4 Boson Functions -- 7.4.1 S States -- 7.4.2 D States -- 7.4.3 F States -- 7.5 The Ansatz -- 7.6 The Jahn-Teller Equations -- 7.7 Solution -- 7.8 Ansatz for Vibronic D States -- 7.9 Application -- 7.10 Conclusion -- References -- 8 The Icosahedral Quartet and SO(9) ↓ SO(4) Symmetry Breaking -- Contents -- 8.1 Introduction -- 8.2 Preamble: Hyperspherical Symmetry -- 8.3 The Hamiltonian -- 8.4 The Vibrations of the Four-Dimensional Hypersphere -- 8.5 SO(9) ↓ SO(4) Symmetry Breaking -- 8.5.1 (0,0) Modes -- 8.5.2 (1,1) Boson Modes -- 8.5.3 Modes with Seniority ν> -- 4 -- 8.6 The Ansatz: Vibronic (12,12) Levels -- 8.7 Icosahedral Symmetry Lowering.
8.8 Application: C20 and C80 Fullerenes -- 8.8.1 C20 -- 8.8.2 C80 -- References -- 9 SO(14) ↓ SO(5) Symmetry Breaking and the Jahn-Teller Quintet Instability -- Contents -- 9.1 Dynamic Symmetries -- 9.2 Descent to Spherical Symmetry -- 9.2.1 Branching Rules for SO(5) SO(3) -- 9.2.2 The L=2 Case -- 9.2.3 The L=4 Case -- 9.3 Descent to Permutational Symmetry -- 9.3.1 The Icosahedral Hamiltonian -- 9.3.2 The Hexateron -- 9.4 Correlation Between the Spherical and the Permutational Scheme -- 9.5 Application: The Ground State of C60+ Cation -- References -- 10 Jahn's and Teller's Last Case: The Spinor Sextet -- Contents -- 10.1 Group Theory of the Sextet Spinor -- 10.1.1 The Unitary Symplectic Group USp(6) -- 10.1.2 The SO(14) Group of the Bosons -- 10.2 The Γ9 ×(g+2h) Problem -- 10.2.1 The Hamiltonian -- 10.2.2 Diagonalization -- 10.2.3 The Equal Coupling Case -- 10.3 Chemical Applications -- 10.4 Overview -- 10.4.1 Orbital Representations: SO(N) ⊃ SO(n) -- 10.4.2 Spinor Representations: SO(N) ⊃ USp(2n) -- References -- Part III Topography -- 11 Conical Intersections and Quantum Fields -- Contents -- 11.1 The Berry Phase -- 11.1.1 The Quantal Phase Factor Accompanying Adiabatic Changes -- 11.1.1.1 Single-Valued Basis Functions -- 11.1.1.2 Real Basis Sets -- 11.1.2 Holonomy -- 11.2 The E×e Jahn-Teller Case -- 11.2.1 Berry Phase for the E×e Case -- 11.2.2 The Dirac Monopole Analogy -- 11.2.3 Berry Phase and Angular Momentum -- 11.3 Quadruple Spin Degeneracy and the Instanton -- 11.3.1 The Γ8 ×t2g Hamiltonian -- 11.3.2 The Γ8 ×(eg+t2g) Hamiltonian -- References -- 12 Topography and Chemical Reactivity -- Contents -- 12.1 Tools -- 12.1.1 The Epikernel Principle -- 12.1.2 The Isostationary Function -- 12.1.3 Proof of the Epikernel Principle -- 12.1.3.1 Only One Λ Irrep -- 12.1.3.2 More than One Λ Irrep -- 12.1.3.3 Illustration: The Γ×(Λ1+Λ2) Problem.
12.2 Orbital Doublets -- 12.2.1 The E×(b1+b2) System -- 12.2.2 The E×e System -- 12.2.3 The Pentagonal E1×e2 Problem -- 12.3 The Cubic T×(e+t2) Problem -- 12.3.1 Second-Order Warping Terms -- 12.3.2 Chemical Reactivity: The Isomerization of Fe(CO)4 -- 12.4 The Icosahedral T ×h System -- 12.5 The Icosahedral G×g+h Quartet System -- 12.5.1 The Isostationary Function -- 12.5.2 Tetrahedral Minima -- 12.5.3 Trigonal Minima -- 12.6 The Icosahedral H×(g+2h) Quintet System -- 12.6.1 The Isostationary Function -- 12.6.2 Pentagonal Minima -- 12.6.3 Trigonal Minima -- 12.7 The Icosahedral Γ9 ×(g+2h) Sextet System -- 12.7.1 The G-Type Subspace -- 12.7.2 The H Subspace -- 12.7.2.1 The FH2 Hamiltonian at β=0∘ -- 12.7.2.2 Trough Solution: T1 ×Γ7: β≈100.893∘ -- 12.7.2.3 Trough Solution: T2 ×Γ6: β≈220.8934 -- References -- Epilogue -- A The Displaced Oscillator -- Contents -- A.1 Hamiltonian -- A.2 The Displacement Operator -- A.3 Eigenfunction of the Annihilation Operator -- A.4 Matrix Representation of the Displaced Oscillator -- References -- B Derivation of the Coupling Coefficients -- Contents -- B.1 Clebsch-Gordan Coupling Coefficients -- B.2 How to Calculate Coupling Coefficients -- B.3 Icosahedral States -- References -- C SU(n), SO(n), Sp(2n) Lie Algebras -- Contents -- C.1 The Special Unitary Group SU(n) -- C.2 The Special Orthogonal Group SO(n) -- C.3 The Symplectic Group Sp(2n) -- References -- D The Birkhoff Transformation -- Contents -- D.1 The Birkhoff Theorem -- D.2 Transformation of the Rabi Equation to the Standard Birkhoff Form -- D.3 Recursion Formulas for the Rabi Case -- D.4 Summary -- References -- E Dirac's Monopole -- Contents -- E.1 The Field of a Monopole -- E.2 The Vector Potential -- References -- F Yang's Monopole -- Contents -- F.1 Introduction -- F.2 The Tensor Potential A -- F.3 The Field Tensor F -- References.
G Topological Graph Theory -- Contents -- G.1 Graphs -- G.2 Rings -- G.3 Faces -- References -- Compound Index -- Subject Index.
Record Nr. UNISA-996490344903316
Ceulemans Arnout  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The theory of the Jahn-Teller effect : when a boson meets a fermion / / Arnout Ceulemans
The theory of the Jahn-Teller effect : when a boson meets a fermion / / Arnout Ceulemans
Autore Ceulemans Arnout
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (429 pages)
Disciplina 530.143
Soggetto topico Interacting boson-fermion models
Jahn-Teller effect
Efecte Jahn-Teller
Bosons
Fermions
Soggetto genere / forma Llibres electrònics
ISBN 9783031095283
9783031095276
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Bosons and Fermions -- 1 The Impossible Theorem -- Contents -- 1.1 The Jahn-Teller Theorem -- 1.2 Charge Density Analysis -- 1.2.1 Occupation of dz2 -- 1.2.2 Occupation of dx2-y2 -- 1.2.3 Sum and Difference Orbitals -- 1.2.4 Orthogonal and Unitary Combinations -- 1.3 Outlook -- References -- 2 Bosons and Fermions -- Contents -- 2.1 Bosons -- 2.1.1 The Schrödinger Formalism -- 2.1.2 The Dirac Formalism -- 2.1.3 The Bargmann Mapping -- 2.2 Fermions -- 2.2.1 Fermion Operators -- 2.2.2 One-Electron Interactions -- 2.2.3 Quasi-Spin -- References -- 3 Boson-Fermion Interactions -- Contents -- 3.1 The Jahn-Teller Effect in a Triangular Molecule: A Toy Model -- 3.1.1 The Hückel Hamiltonian -- 3.1.2 Fermions: Trigonal Molecular Orbitals -- 3.1.3 Bosons: Vibrational Modes -- 3.1.4 Coupling Coefficients -- 3.2 Degeneracies and Time Reversal -- 3.2.1 Time Reversal -- 3.2.2 Irreducible Representations of the First Kind and Orthogonal Lie Groups -- 3.2.3 Irreducible Representations of the Second Kind and Symplectic Lie Groups -- 3.2.4 Irreducible Representations of the Third Kind -- 3.3 The Jahn-Teller Hamiltonian -- 3.4 Selection Rules -- 3.4.1 Space Symmetry -- 3.4.2 Time Reversal Symmetry -- 3.4.3 Hole-Particle Exchange Symmetry -- 3.5 Proof of the Jahn-Teller Theorem -- 3.5.1 History -- 3.5.2 Where Do Degeneracies Come From? -- 3.5.2.1 Cosets and the Positional Representation -- 3.5.2.2 Doubly Transitive Orbits -- 3.5.3 Degenerate Representations and Jahn-Teller Modes -- 3.5.4 Jahn-Teller Activity in Simplexes -- References -- Part II Dynamic Symmetries -- 4 The Rabi Hamiltonian -- Contents -- 4.1 The Adiabatic Potential -- 4.2 The Quantum Model -- 4.3 Bargmann Mapping of the Wave Equations -- 4.4 Eigenvalues -- 4.4.1 Classification of the Roots -- 4.4.2 Recurrence Relations and Transcendental Function.
4.4.3 The Rabi Spectrum -- 4.5 The Quantization of the Rabi Hamiltonian -- 4.6 Analyticity -- 4.7 Inversion Tunneling in Ammonia -- References -- 5 The E ×e Orbital Doublet -- Contents -- 5.1 The Quantum Model -- 5.2 Dynamic Symmetries -- 5.2.1 Boson Symmetry -- 5.2.2 Fermion Symmetry -- 5.2.3 Coupled Symmetries -- 5.3 The Canonical Form of the Wave Equation -- 5.4 Recurrence Relationships -- 5.5 Results -- 5.6 Discussion -- 5.7 Application: Na3 and the (E+A)×e Hamiltonian -- References -- 6 The Spin Quartet Γ8 ×(e+t2) System and the Symplectic Group Sp(4) -- Contents -- 6.1 Historical Note: Judd and Reik -- 6.2 The Hamiltonian -- 6.2.1 The Static Case -- 6.2.2 The Dynamic Hamiltonian -- 6.3 Sp(4) Fermion Symmetry -- 6.4 SO(5) Boson Symmetry -- 6.5 The Γ8 ×(e+t2) Dynamic Equations -- 6.6 The Γ8 ×t2 Subsystem -- 6.6.1 SO(3) Invariance -- 6.6.2 Dynamic Equations -- 6.7 Application -- 6.7.1 ReF6 -- 6.7.2 IrF6 -- References -- 7 Ansatz for the Jahn-Teller Triplet Instability -- Contents -- 7.1 SO(5) Symmetry and the Five-Dimensional Harmonic Oscillator -- 7.1.1 SU(5) ↓ SO(5) Symmetry Breaking -- 7.1.2 SO(5) ↓ SO(3) Symmetry Breaking -- 7.2 The Hamiltonian -- 7.3 The Vibrating Sphere -- 7.4 Boson Functions -- 7.4.1 S States -- 7.4.2 D States -- 7.4.3 F States -- 7.5 The Ansatz -- 7.6 The Jahn-Teller Equations -- 7.7 Solution -- 7.8 Ansatz for Vibronic D States -- 7.9 Application -- 7.10 Conclusion -- References -- 8 The Icosahedral Quartet and SO(9) ↓ SO(4) Symmetry Breaking -- Contents -- 8.1 Introduction -- 8.2 Preamble: Hyperspherical Symmetry -- 8.3 The Hamiltonian -- 8.4 The Vibrations of the Four-Dimensional Hypersphere -- 8.5 SO(9) ↓ SO(4) Symmetry Breaking -- 8.5.1 (0,0) Modes -- 8.5.2 (1,1) Boson Modes -- 8.5.3 Modes with Seniority ν> -- 4 -- 8.6 The Ansatz: Vibronic (12,12) Levels -- 8.7 Icosahedral Symmetry Lowering.
8.8 Application: C20 and C80 Fullerenes -- 8.8.1 C20 -- 8.8.2 C80 -- References -- 9 SO(14) ↓ SO(5) Symmetry Breaking and the Jahn-Teller Quintet Instability -- Contents -- 9.1 Dynamic Symmetries -- 9.2 Descent to Spherical Symmetry -- 9.2.1 Branching Rules for SO(5) SO(3) -- 9.2.2 The L=2 Case -- 9.2.3 The L=4 Case -- 9.3 Descent to Permutational Symmetry -- 9.3.1 The Icosahedral Hamiltonian -- 9.3.2 The Hexateron -- 9.4 Correlation Between the Spherical and the Permutational Scheme -- 9.5 Application: The Ground State of C60+ Cation -- References -- 10 Jahn's and Teller's Last Case: The Spinor Sextet -- Contents -- 10.1 Group Theory of the Sextet Spinor -- 10.1.1 The Unitary Symplectic Group USp(6) -- 10.1.2 The SO(14) Group of the Bosons -- 10.2 The Γ9 ×(g+2h) Problem -- 10.2.1 The Hamiltonian -- 10.2.2 Diagonalization -- 10.2.3 The Equal Coupling Case -- 10.3 Chemical Applications -- 10.4 Overview -- 10.4.1 Orbital Representations: SO(N) ⊃ SO(n) -- 10.4.2 Spinor Representations: SO(N) ⊃ USp(2n) -- References -- Part III Topography -- 11 Conical Intersections and Quantum Fields -- Contents -- 11.1 The Berry Phase -- 11.1.1 The Quantal Phase Factor Accompanying Adiabatic Changes -- 11.1.1.1 Single-Valued Basis Functions -- 11.1.1.2 Real Basis Sets -- 11.1.2 Holonomy -- 11.2 The E×e Jahn-Teller Case -- 11.2.1 Berry Phase for the E×e Case -- 11.2.2 The Dirac Monopole Analogy -- 11.2.3 Berry Phase and Angular Momentum -- 11.3 Quadruple Spin Degeneracy and the Instanton -- 11.3.1 The Γ8 ×t2g Hamiltonian -- 11.3.2 The Γ8 ×(eg+t2g) Hamiltonian -- References -- 12 Topography and Chemical Reactivity -- Contents -- 12.1 Tools -- 12.1.1 The Epikernel Principle -- 12.1.2 The Isostationary Function -- 12.1.3 Proof of the Epikernel Principle -- 12.1.3.1 Only One Λ Irrep -- 12.1.3.2 More than One Λ Irrep -- 12.1.3.3 Illustration: The Γ×(Λ1+Λ2) Problem.
12.2 Orbital Doublets -- 12.2.1 The E×(b1+b2) System -- 12.2.2 The E×e System -- 12.2.3 The Pentagonal E1×e2 Problem -- 12.3 The Cubic T×(e+t2) Problem -- 12.3.1 Second-Order Warping Terms -- 12.3.2 Chemical Reactivity: The Isomerization of Fe(CO)4 -- 12.4 The Icosahedral T ×h System -- 12.5 The Icosahedral G×g+h Quartet System -- 12.5.1 The Isostationary Function -- 12.5.2 Tetrahedral Minima -- 12.5.3 Trigonal Minima -- 12.6 The Icosahedral H×(g+2h) Quintet System -- 12.6.1 The Isostationary Function -- 12.6.2 Pentagonal Minima -- 12.6.3 Trigonal Minima -- 12.7 The Icosahedral Γ9 ×(g+2h) Sextet System -- 12.7.1 The G-Type Subspace -- 12.7.2 The H Subspace -- 12.7.2.1 The FH2 Hamiltonian at β=0∘ -- 12.7.2.2 Trough Solution: T1 ×Γ7: β≈100.893∘ -- 12.7.2.3 Trough Solution: T2 ×Γ6: β≈220.8934 -- References -- Epilogue -- A The Displaced Oscillator -- Contents -- A.1 Hamiltonian -- A.2 The Displacement Operator -- A.3 Eigenfunction of the Annihilation Operator -- A.4 Matrix Representation of the Displaced Oscillator -- References -- B Derivation of the Coupling Coefficients -- Contents -- B.1 Clebsch-Gordan Coupling Coefficients -- B.2 How to Calculate Coupling Coefficients -- B.3 Icosahedral States -- References -- C SU(n), SO(n), Sp(2n) Lie Algebras -- Contents -- C.1 The Special Unitary Group SU(n) -- C.2 The Special Orthogonal Group SO(n) -- C.3 The Symplectic Group Sp(2n) -- References -- D The Birkhoff Transformation -- Contents -- D.1 The Birkhoff Theorem -- D.2 Transformation of the Rabi Equation to the Standard Birkhoff Form -- D.3 Recursion Formulas for the Rabi Case -- D.4 Summary -- References -- E Dirac's Monopole -- Contents -- E.1 The Field of a Monopole -- E.2 The Vector Potential -- References -- F Yang's Monopole -- Contents -- F.1 Introduction -- F.2 The Tensor Potential A -- F.3 The Field Tensor F -- References.
G Topological Graph Theory -- Contents -- G.1 Graphs -- G.2 Rings -- G.3 Faces -- References -- Compound Index -- Subject Index.
Record Nr. UNINA-9910616384203321
Ceulemans Arnout  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui