Advances of Italian Machine Design |
Autore | Ceccarelli Marco |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (204 p.) |
Soggetto topico | Technology: general issues |
Soggetto non controllato |
biomechanical engineering
wearable robotics hand exoskeleton mechanism design and optimization kinematic analysis mechatronics Handwheelchair.q Disabled sport Manual wheelchair water wheel grain water mill wooden teeth gear history of mechanism and machine science micro-hydro renewable energy magneto-rheological elastomers smart materials semi-active isolator iron powder wearable device blood ultrafiltration mechatronic device renal replacement bevel gears gear design Tredgold numerical simulations shape memory alloy SMA wires flexible actuator modular actuator mathematical model experimental test tilting pad journal bearing nonlinear behavior experimental characterization stiffness modelling performance indices condition number volumetric isotropy index parallel manipulator two-stage planetary gearbox varying load dynamic torque efficiency rotating machinery Intelligent tire flex sensor PVDF sensor energy saving vehicle dynamics smart systems vibroprotection seismic rolling bearer vibration non-linear vibrations cumulative curves singular point |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557740103321 |
Ceccarelli Marco | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Designs and prototypes of mobile robots / / Marco Ceccarelli, Emin Faruk Kececi |
Autore | Ceccarelli Marco |
Pubbl/distr/stampa | New York, New York : , : Momentum Press, LLC, , [2015] |
Descrizione fisica | 1 online resource (204 p.) |
Disciplina | 629.892 |
Collana | Automation and control collection |
Soggetto topico | Mobile robots |
Soggetto genere / forma | Electronic books. |
ISBN | 1-60650-824-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1. Linkages for leg mechanisms / Marco Ceccarelli -- 1.1 Walking issues for robots -- 1.2 A historical survey of mechanisms for walking machines -- 1.3 Modern solutions -- 1.4 Challenges for future developments -- 1.5 Conclusions -- 1.6 References --
2. Exoskeletons and bipeds / Qiang Huang and Zhangguo Yu -- 2.1 Exoskeletons -- 2.1.1 History and overview -- 2.1.2 Mechanism design principles -- 2.1.3 Sensing and control algorithm -- 2.1.4 Actuators and portable power supply -- 2.2 Bipeds -- 2.2.1 History and overview -- 2.2.2 Mechanism design -- 2.2.3 Motion planning -- 2.2.4 Stability control -- 2.2.5 Control system -- 2.2.6 Biped walking -- 2.3 Conclusions -- 2.4 References -- 3. Mechanical design challenges in rescue robot prototyping / Emin Faruk Kececi -- 3.1 Introduction -- 3.2 Design challenges -- 3.3 Digital prototyping -- 3.4 Physical robot prototyping -- 3.5 Design process -- 3.6 Fault analyses -- 3.6.1 Functional conflicts -- 3.6.2 Materials and manufacturing methods -- 3.6.3 Testing -- 3.7 Conclusions and future directions -- 3.8 Acknowledgment -- 3.9 References -- 4. Networked control for mobile robots / Xilung Ding -- 4.1 Introduction -- 4.2 Applications of networked control mobile robots -- 4.3 Introduction of NOROs robots -- 4.4 Advantages and challenges -- 4.5 Control challenges and achievements -- 4.5.1 Overview of NCS -- 4.5.2 Major accomplishments -- 4.6 Communication challenges and achievements -- 4.6.1 Key problems -- 4.6.2 Major accomplishments -- 4.6.3 Dynamic lunar exploration robots routing protocol -- 4.6.4 Dynamic lunar exploration robots routing protocol -- 4.6.5 The optimal ad hoc routing protocols design for multi moon exploration robots system -- 4.6.6 Simulation and results -- 4.7 Perception challenges and achievements -- 4.7.1 Key problems -- 4.7.2 Major accomplishments -- 4.7.3 Dynamic CSS localization system for NOROS robots -- 4.8 Conclusions and future works -- 4.9 References -- 5. Human-machine interface of mobile robot for posture / I-Ming Chen -- 5.1 A survey of HMI for robots -- 5.1.1 Traditional input devices -- 5.1.2 Passive multi-axes manipulator -- 5.1.3 Touch screen -- 5.1.4 Human motion sensing devices -- 5.1.5 Bio-signal capture and speech recognition system -- 5.1.6 Challenges and open problems of HMI -- 5.2 Motion replication system -- 5.3 Visual and verbal feedback -- 5.3.1 Visual presentation and feedback -- 5.3.2 Visual presentation and feedback -- 5.4 System implementation -- 5.4.1 Hardware and system design -- 5.4.2 Kinematic model -- 5.4.3 Calibration procedure -- 5.4.4 Comparison method -- 5.5 Experiment -- 5.6 Results and discussion -- 5.6.1 Analysis of the questionnaire -- 5.6.2 Result of the performance -- 5.7 Conclusion -- 5.8 References -- 6. Robot education with mobile robots / Jorge Solis -- 6.1 Introduction -- 6.2 Mobile robot platforms for education -- 6.2.1 RoboDesigner -- 6.2.2 MiniWay -- 6.2.3 Learning outcomes -- 6.3 Research problems and trends -- 6.4 Closure -- 6.5 References. |
Record Nr. | UNINA-9910460996503321 |
Ceccarelli Marco | ||
New York, New York : , : Momentum Press, LLC, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Designs and prototypes of mobile robots / / Marco Ceccarelli, Emin Faruk Kececi |
Autore | Ceccarelli Marco |
Pubbl/distr/stampa | New York, New York : , : Momentum Press, LLC, , [2015] |
Descrizione fisica | 1 online resource (204 p.) |
Disciplina | 629.892 |
Collana | Automation and control collection |
Soggetto topico | Mobile robots |
ISBN | 1-60650-824-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1. Linkages for leg mechanisms / Marco Ceccarelli -- 1.1 Walking issues for robots -- 1.2 A historical survey of mechanisms for walking machines -- 1.3 Modern solutions -- 1.4 Challenges for future developments -- 1.5 Conclusions -- 1.6 References --
2. Exoskeletons and bipeds / Qiang Huang and Zhangguo Yu -- 2.1 Exoskeletons -- 2.1.1 History and overview -- 2.1.2 Mechanism design principles -- 2.1.3 Sensing and control algorithm -- 2.1.4 Actuators and portable power supply -- 2.2 Bipeds -- 2.2.1 History and overview -- 2.2.2 Mechanism design -- 2.2.3 Motion planning -- 2.2.4 Stability control -- 2.2.5 Control system -- 2.2.6 Biped walking -- 2.3 Conclusions -- 2.4 References -- 3. Mechanical design challenges in rescue robot prototyping / Emin Faruk Kececi -- 3.1 Introduction -- 3.2 Design challenges -- 3.3 Digital prototyping -- 3.4 Physical robot prototyping -- 3.5 Design process -- 3.6 Fault analyses -- 3.6.1 Functional conflicts -- 3.6.2 Materials and manufacturing methods -- 3.6.3 Testing -- 3.7 Conclusions and future directions -- 3.8 Acknowledgment -- 3.9 References -- 4. Networked control for mobile robots / Xilung Ding -- 4.1 Introduction -- 4.2 Applications of networked control mobile robots -- 4.3 Introduction of NOROs robots -- 4.4 Advantages and challenges -- 4.5 Control challenges and achievements -- 4.5.1 Overview of NCS -- 4.5.2 Major accomplishments -- 4.6 Communication challenges and achievements -- 4.6.1 Key problems -- 4.6.2 Major accomplishments -- 4.6.3 Dynamic lunar exploration robots routing protocol -- 4.6.4 Dynamic lunar exploration robots routing protocol -- 4.6.5 The optimal ad hoc routing protocols design for multi moon exploration robots system -- 4.6.6 Simulation and results -- 4.7 Perception challenges and achievements -- 4.7.1 Key problems -- 4.7.2 Major accomplishments -- 4.7.3 Dynamic CSS localization system for NOROS robots -- 4.8 Conclusions and future works -- 4.9 References -- 5. Human-machine interface of mobile robot for posture / I-Ming Chen -- 5.1 A survey of HMI for robots -- 5.1.1 Traditional input devices -- 5.1.2 Passive multi-axes manipulator -- 5.1.3 Touch screen -- 5.1.4 Human motion sensing devices -- 5.1.5 Bio-signal capture and speech recognition system -- 5.1.6 Challenges and open problems of HMI -- 5.2 Motion replication system -- 5.3 Visual and verbal feedback -- 5.3.1 Visual presentation and feedback -- 5.3.2 Visual presentation and feedback -- 5.4 System implementation -- 5.4.1 Hardware and system design -- 5.4.2 Kinematic model -- 5.4.3 Calibration procedure -- 5.4.4 Comparison method -- 5.5 Experiment -- 5.6 Results and discussion -- 5.6.1 Analysis of the questionnaire -- 5.6.2 Result of the performance -- 5.7 Conclusion -- 5.8 References -- 6. Robot education with mobile robots / Jorge Solis -- 6.1 Introduction -- 6.2 Mobile robot platforms for education -- 6.2.1 RoboDesigner -- 6.2.2 MiniWay -- 6.2.3 Learning outcomes -- 6.3 Research problems and trends -- 6.4 Closure -- 6.5 References. |
Record Nr. | UNINA-9910797105503321 |
Ceccarelli Marco | ||
New York, New York : , : Momentum Press, LLC, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Designs and prototypes of mobile robots / / Marco Ceccarelli, Emin Faruk Kececi |
Autore | Ceccarelli Marco |
Pubbl/distr/stampa | New York, New York : , : Momentum Press, LLC, , [2015] |
Descrizione fisica | 1 online resource (204 p.) |
Disciplina | 629.892 |
Collana | Automation and control collection |
Soggetto topico | Mobile robots |
ISBN | 1-60650-824-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
1. Linkages for leg mechanisms / Marco Ceccarelli -- 1.1 Walking issues for robots -- 1.2 A historical survey of mechanisms for walking machines -- 1.3 Modern solutions -- 1.4 Challenges for future developments -- 1.5 Conclusions -- 1.6 References --
2. Exoskeletons and bipeds / Qiang Huang and Zhangguo Yu -- 2.1 Exoskeletons -- 2.1.1 History and overview -- 2.1.2 Mechanism design principles -- 2.1.3 Sensing and control algorithm -- 2.1.4 Actuators and portable power supply -- 2.2 Bipeds -- 2.2.1 History and overview -- 2.2.2 Mechanism design -- 2.2.3 Motion planning -- 2.2.4 Stability control -- 2.2.5 Control system -- 2.2.6 Biped walking -- 2.3 Conclusions -- 2.4 References -- 3. Mechanical design challenges in rescue robot prototyping / Emin Faruk Kececi -- 3.1 Introduction -- 3.2 Design challenges -- 3.3 Digital prototyping -- 3.4 Physical robot prototyping -- 3.5 Design process -- 3.6 Fault analyses -- 3.6.1 Functional conflicts -- 3.6.2 Materials and manufacturing methods -- 3.6.3 Testing -- 3.7 Conclusions and future directions -- 3.8 Acknowledgment -- 3.9 References -- 4. Networked control for mobile robots / Xilung Ding -- 4.1 Introduction -- 4.2 Applications of networked control mobile robots -- 4.3 Introduction of NOROs robots -- 4.4 Advantages and challenges -- 4.5 Control challenges and achievements -- 4.5.1 Overview of NCS -- 4.5.2 Major accomplishments -- 4.6 Communication challenges and achievements -- 4.6.1 Key problems -- 4.6.2 Major accomplishments -- 4.6.3 Dynamic lunar exploration robots routing protocol -- 4.6.4 Dynamic lunar exploration robots routing protocol -- 4.6.5 The optimal ad hoc routing protocols design for multi moon exploration robots system -- 4.6.6 Simulation and results -- 4.7 Perception challenges and achievements -- 4.7.1 Key problems -- 4.7.2 Major accomplishments -- 4.7.3 Dynamic CSS localization system for NOROS robots -- 4.8 Conclusions and future works -- 4.9 References -- 5. Human-machine interface of mobile robot for posture / I-Ming Chen -- 5.1 A survey of HMI for robots -- 5.1.1 Traditional input devices -- 5.1.2 Passive multi-axes manipulator -- 5.1.3 Touch screen -- 5.1.4 Human motion sensing devices -- 5.1.5 Bio-signal capture and speech recognition system -- 5.1.6 Challenges and open problems of HMI -- 5.2 Motion replication system -- 5.3 Visual and verbal feedback -- 5.3.1 Visual presentation and feedback -- 5.3.2 Visual presentation and feedback -- 5.4 System implementation -- 5.4.1 Hardware and system design -- 5.4.2 Kinematic model -- 5.4.3 Calibration procedure -- 5.4.4 Comparison method -- 5.5 Experiment -- 5.6 Results and discussion -- 5.6.1 Analysis of the questionnaire -- 5.6.2 Result of the performance -- 5.7 Conclusion -- 5.8 References -- 6. Robot education with mobile robots / Jorge Solis -- 6.1 Introduction -- 6.2 Mobile robot platforms for education -- 6.2.1 RoboDesigner -- 6.2.2 MiniWay -- 6.2.3 Learning outcomes -- 6.3 Research problems and trends -- 6.4 Closure -- 6.5 References. |
Record Nr. | UNINA-9910814593203321 |
Ceccarelli Marco | ||
New York, New York : , : Momentum Press, LLC, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fundamentals of mechanics of robotic manipulation / / Marco Ceccarelli |
Autore | Ceccarelli Marco |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (398 pages) : illustrations (black and white) |
Disciplina | 629.8933 |
Collana | Mechanisms and machine science |
Soggetto topico | Manipulators (Mechanism) |
ISBN |
9783030908485
9783030908461 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Author -- 1 Introduction to Automation and Robotics -- 1.1 Automatic Systems and Robots -- 1.2 Evolution and Applications of Robots -- 1.3 Examples and Technical Characteristics of Robots -- 1.4 Evaluation of a Robotization -- 1.4.1 An Economic Estimation -- 1.5 Forum for Discussions on Robotics -- 2 Analysis of Manipulations -- 2.1 Decomposition of Manipulative Actions -- 2.2 A Procedure for Analyzing Manipulation Tasks -- 2.3 Programming for Robots -- 2.3.1 A Programming Language for Robots: VAL-II -- 2.3.2 A Programming Language for Robots: ACL -- 2.4 Illustrative Examples -- 2.4.1 Education Practices -- 2.4.2 Industrial Applications -- 3 Fundamentals of the Mechanics of Serial Manipulators -- 3.1 Kinematic Model -- 3.1.1 Transformation Matrix -- 3.1.2 Joint Variables and Actuator Pace -- 3.1.3 Workspace Analysis -- 3.1.4 Manipulator Design with Prescribed Workspace -- 3.1.5 Feasible Area for Workspace -- 3.2 Inverse Kinematics and Path Planning -- 3.2.1 A Formulation for Inverse Kinematics -- 3.2.2 Trajectory Generation in Joint Space -- 3.2.3 A Formulation for Path Planning in Cartesian Coordinates -- 3.3 Velocity and Acceleration Analysis -- 3.3.1 An Example -- 3.4 Jacobian and Singular Configurations -- 3.4.1 An Example -- 3.5 Statics of Manipulators -- 3.5.1 A Mechanical Model -- 3.5.2 Equations of Equilibrium -- 3.5.3 Jacobian Mapping of Forces -- 3.5.4 An Example -- 3.6 Dynamics of Manipulators -- 3.6.1 Mechanical Model and Inertia Characteristics -- 3.6.2 Newton--Euler Equations -- 3.6.3 Lagrange Formulation -- 3.6.4 An Example -- 3.7 Stiffness of Manipulators -- 3.7.1 A Mechanical Model -- 3.7.2 A Formulation for Stiffness Analysis -- 3.7.3 A Numerical Example -- 3.8 Performance Criteria for Manipulators -- 3.8.1 Accuracy and Repeatability.
3.8.2 Dynamic Characteristics -- 3.8.3 Compliance Response -- 3.9 Concepts for Manipulator Balancing -- 3.10 Considerations on Mechanism Design for Robots -- 4 Fundamentals of the Mechanics of Parallel Manipulators -- 4.1 Designs of Parallel Manipulators -- 4.2 Kinematics of Parallel Manipulators -- 4.2.1 Workspace of Parallel Manipulators -- 4.2.2 Singularity Analysis -- 4.3 Stiffness Analysis -- 4.4 A Design Formulation -- 4.5 A Numerical Example for CaPaMan (Cassino Parallel Manipulator) -- 5 Fundamentals of the Mechanics of Grasp -- 5.1 A Short Account of History of Grasping Devices -- 5.2 Gripping Devices and Their Characteristics -- 5.3 A Mechatronic Analysis for Two-Finger Grippers -- 5.4 Design Parameters and Operation Requirements for Grippers -- 5.5 Configurations and Phases of Two-Finger Grasp -- 5.6 Model and Analysis of Two-Finger Grasp -- 5.6.1 Impacts in Grasping -- 5.7 Mechanisms for Grippers -- 5.7.1 Modeling Gripper Mechanisms -- 5.7.2 An Evaluation of Gripping Mechanisms -- 5.8 Designing Two-Finger Grippers -- 5.8.1 An Optimum Design Procedure for Gripping Mechanisms -- 5.9 Electropneumatic Actuation and Grasping Force Control -- 5.9.1 An Illustrative Example for Laboratory Practice -- 5.10 Fundamentals on Multi-finger Grasp and Articulated Fingers -- 5.10.1 Underactuated Finger Mechanisms -- 5.10.2 An Example: The LARM Hand -- Bibliography. |
Record Nr. | UNINA-9910558484303321 |
Ceccarelli Marco | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanism Design for Robotics |
Autore | Ceccarelli Marco |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (212 p.) |
Soggetto non controllato |
robot control
cylindrical V2SOM 3-UPU parallel mechanism McKibben muscle compliance control gait planning grasp stability robot singularity safety mechanism robot exercising device hexapod walking robot inadvertent braking energy efficiency robotic cell humanoid robots collaborative robot robot wrists humanoid robotic hands stability cable-driven robots image processing fail-safe operation VSA graphical user interface computer-aided design robotic legs human-robot-interaction shape changing painting robot shape memory alloy velocity control underactuated fingers safe physical human-robot interaction (pHRI) human-machine interaction compliant mechanism iCub robot-assisted Doppler sonography pHRI spherical parallel mechanism mobile manipulation economic locomotion haptic glove learning by demonstration robot kinematics variable stiffness actuator (VSA) workspace analysis singularity analysis collaborative robots parallel mechanisms rolling SMA actuator elliptical cable-driven parallel robots non-photorealistic rendering redundancy kinematic redundancy variable stiffness actuator trajectory planning kinematics pneumatic artificial muscle artistic rendering force reflection safe physical human-robot interaction orientational mechanisms teleoperation actuation burden cobot hand exoskeleton |
ISBN | 3-03921-059-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346688803321 |
Ceccarelli Marco | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
State-Of-the-Art and Innovations in Mechanism and Machine Science : A Tribute to Carlos López-Cajún |
Autore | Ceccarelli Marco |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (313 pages) |
Altri autori (Persone) | Jauregui-CorreaJuan Carlos |
Collana | Mechanisms and Machine Science Series |
ISBN | 3-031-47040-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- 1 Carlos López-Cajún: IFToMMist MMS Scientist -- 1.1 Biographical Notes -- 1.2 IFToMMist Figure -- 1.3 MMS Scientist -- 1.4 Conclusions -- References -- 2 First in Memoriam Seminar for Carlos Lopez Cajun (Summary of Presentations) -- 2.1 Introduction -- 2.2 Juan Primo Benitez-Rangel and Wenceslao Ortiz-Vargas -- 2.2.1 Summary -- 2.2.2 Introduction -- 2.2.3 His Beginning -- 2.2.4 Professional Environment -- 2.2.5 Sabbatical Year -- 2.2.6 Didactic Changes -- 2.3 Aurelio Dominguez-Gonzalez -- 2.3.1 A Little History with Dr. López Cajún -- 2.4 Alejandro Lozano-Guzmán -- 3 A Note on the History of the Science of Machines -- 3.1 Introduction -- 3.2 Simple Machines 1: Mechanical Problems -- 3.3 Simple Machines 2: Heron of Alexandria -- 3.4 Simple Machines 3: Galilei -- 3.5 Simple Machines 4: The Encyclopedists -- 3.6 Kinematics 1: Leupold -- 3.7 Kinematics 2: Lazare Carnot -- 3.8 Kinematics 3: Gaspard Monge -- 3.9 Kinematics 4: Robert Willis -- 3.10 Kinematics 5: Franz Reuleaux -- 3.11 Dynamics, Concluding Remarks -- References -- 4 Motion Synthesis: From the Classical Work of Reuleaux to the More Modern Robot Motion Planning -- 4.1 Introduction -- 4.2 Reuleaux's Method -- 4.3 Kinematic Mapping Methods -- 4.4 Riemannian Manifolds and Lie Groups -- 4.5 Conclusions -- References -- 5 Betancourt's Contribution to Path Generation Synthesis in Mechanisms -- 5.1 Introduction -- 5.2 The Mémoire Sur Une Machine À Vapeur À Double Effect -- 5.3 The "Essai Sur La Composition Des Machines" -- 5.4 Conclusions -- References -- 6 A Brief History of Robotics Development of CAS -- 6.1 The Initial Period (1975-1985) -- 6.2 The Growth Period (1986-2005) -- 6.3 The Rapid Development Period (2006-2020) -- 6.4 Conclusion -- References -- 7 Education in Mechanism and Machine Science -- 7.1 Introduction -- 7.2 MMS Contents.
7.2.1 Introduction to Mechanism and Machine Science -- 7.2.2 Engineering Mechanics Fundamentals -- 7.2.3 Kinematics of Mechanisms -- 7.2.4 Dynamics of Machinery -- 7.2.5 Machine Elements -- 7.2.6 Advanced MMS -- 7.3 MMS Teaching -- 7.4 Talent Attraction to MMS and New Prospectives -- 7.5 Conclusions -- References -- 8 Cam Mechanisms in the MMS Study Course -- 8.1 Introduction -- 8.2 Aspects of Active Learning in Section Cams in the MMS Study Course -- 8.3 Cams by Students' Eyes -- 8.4 Cams in Student Olympiads on MMS -- 8.5 Conclusion -- References -- 9 Examples of a Learning-By-Doing Approach for Bachelor and Master Students Approaching Robot Design -- 9.1 Introduction -- 9.2 Learning by Doing Concepts -- 9.3 The Proposed Robot Design Learning Approach -- 9.4 The Need of Optimal Design Criteria -- 9.5 Exemplificative Case Studies -- 9.5.1 The RobotSumo Competition for Bachelor Students -- 9.5.2 Examples of Mechatronics' Group Projects at Master Level -- 9.6 Conclusions -- References -- 10 Innovations in Design of Worm-type Gears in the Last Two Decades -- 10.1 Introduction -- 10.2 The Main Object of Development-spiroid Gear -- 10.3 Special Case-Low-Speed Spiroid Gears -- 10.4 "Unexpected" Design Rules -- 10.5 Another Special Case-Spiroid Gears with Small Gear Ratios -- 10.6 Steel-Steel Worm Gears -- 10.7 Planetary Worm and Spiroid Gear -- 10.8 Conclusion -- References -- 11 Design of Gear Pump of Electro-Hydrostatic Actuator for Robots -- 11.1 Introduction -- 11.2 Difference Between EHA and Conventional Geared Motor -- 11.2.1 Backdrivability -- 11.2.2 Size and Weight -- 11.2.3 Internal Leakage -- 11.3 Development of a Pump for Robotic EHA -- 11.3.1 Types of a Pump -- 11.3.2 Design of Internal Clearances of a Gear Pump -- 11.3.3 Design of Gear Side Clearance -- 11.3.4 Design of Gear Tip Clearance -- 11.4 Conclusion -- References. 12 Overview of Special Wire Mechanisms Used for Self-balancing Mechanisms -- 12.1 Introduction: State-of-Art -- 12.2 Special Self-balancing Wire Mechanisms -- 12.2.1 Principle of Force Equilibrium -- 12.2.2 Self-balancing of a Measurement Head -- 12.2.3 Force Equilibrium in a Constant Pressure Chamber -- 12.2.4 Force Equilibrium of a Bistable Type Mechanism -- 12.2.5 Force Equilibrium by Self-balancing Conco-Balancer Manipulator -- 12.3 Scientific Contributions -- References -- 13 Design of a Five DOF Contactless Robot for Facade Inspection -- 13.1 Introduction -- 13.2 Inspection Task for Building Facades -- 13.3 Conceptual Design of the Proposal -- 13.4 Forward and Inverse Kinematics -- 13.5 Detailed Robot Design -- 13.6 Construction of a Laboratory Prototype -- 13.7 Conclusions -- References -- 14 Motion Planning of Humanoid Robots Walking in Any Direction on Plane Surfaces with Arbitrary Orientation -- 14.1 Introduction -- 14.2 Position Analysis of the Legs of a Humanoid -- 14.2.1 Inverse Kinematics -- 14.3 Gait of a Humanoid Based on Cycloidal Motions -- 14.4 Sloping Surface for Walking -- 14.5 Inverse Kinematics of Velocity and Acceleration -- 14.6 Analysis of a Walking of the Bioloid Robot on a Sloping Surface Using Cycloidal Functions -- 14.6.1 Stability Index -- 14.7 Conclusion -- Appendix A. Time Cycloidal Functions for Motion of Pelvis and Free Foot -- Appendix B. Inertial Properties of Links of the Bioloid Robot -- References -- 15 A Cable-Based Quadrotor Test Bench: Preliminary Results -- 15.1 Introduction -- 15.2 Physical Foundations for Test Bench Design -- 15.2.1 Quadrotor Dynamics -- 15.2.2 Rotor and Aerodynamic Characteristics -- 15.3 System Overview -- 15.3.1 Structure of the Test Bench -- 15.3.2 Hardware and Software Implementation -- 15.4 Preliminary Experimental Results -- 15.5 Conclusions and Future Work -- References. 16 Synchronization in Mechanical Systems -- 16.1 Introduction -- 16.2 Overview -- 16.3 Models of Analysis -- 16.3.1 Spectral Analysis -- 16.3.2 Correlation -- 16.3.3 Spectrograms -- 16.3.4 Kuramoto's Parameter -- 16.4 Recent Publications -- References -- 17 Designer's Perspective on Applying Mechanisms for Biomechanics Solutions: Unlocking the Future of Healthcare -- 17.1 Introduction -- 17.2 Design Requirement -- 17.2.1 Case I. Portable Mechanical Ventilator Design for Patients with COVID-19 -- 17.2.2 Case II. Design of a Multi-actuator Testbed to Assess Spinal Vertebrae Samples -- 17.2.3 Case III. Analysis of an Embedded Child Restraint System for Groups I, II, and III in a Vehicle -- 17.3 Overview -- 17.3.1 Results Case I -- 17.3.2 Results Case II -- 17.3.3 Results Case III -- 17.4 Conclusion -- References -- 18 REST: A REmote Skeleton Telerehabilitation System -- 18.1 Introduction -- 18.2 Proposed Telerehabilitation System -- 18.3 Implementation and Testing -- 18.4 Conclusions -- References -- 19 Design of Single/Mixed Chemistry eVTOL Battery Packs -- 19.1 Introduction -- 19.2 eVTOL Industry Survey -- 19.3 Mixed Chemistry Pack Design -- 19.4 Simulation Tool Development -- 19.5 Application to eVTOL Design #2 -- 19.5.1 Energy Cell-Only Design -- 19.5.2 Power Cell-Only Design -- 19.5.3 Mixed Chemistry Design -- 19.6 Summary -- References -- Index. |
Record Nr. | UNINA-9910770265003321 |
Ceccarelli Marco | ||
Cham : , : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|