top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Signal and image multiresolution analysis / / edited by Abdeljalil Ouahabi ; series editor, Francis Castanie
Signal and image multiresolution analysis / / edited by Abdeljalil Ouahabi ; series editor, Francis Castanie
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (308 p.)
Disciplina 621.3822
Altri autori (Persone) OuahabiAbdeldjalil
CastanieFrancis
Collana Digital signal and image processing series
Soggetto topico Signal processing
Image processing
ISBN 9781118568767
1118568761
9781118568590
1118568591
9781118568668
1118568664
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Introduction to Multiresolution Analysis; 1.1. Introduction; 1.2. Wavelet transforms: an introductory review; 1.2.1. Brief history; 1.2.2. Continuous wavelet transforms; 1.2.2.1. Wavelet transform modulus maxima; 1.2.2.2. Reconstruction; 1.2.3. Discrete wavelet transforms; 1.3. Multiresolution; 1.3.1. Multiresolution analysis and wavelet bases; 1.3.1.1. Approximation spaces; 1.3.1.2. Detail spaces; 1.3.2. Multiresolution analysis: points to remember; 1.3.3. Decomposition and reconstruction
1.3.3.1. Calculation of coefficients1.3.3.2. Implementation of MRA: Mallat algorithm; 1.3.3.3. Extension to images; 1.3.4. Wavelet packets; 1.3.5. Multiresolution analysis summarized; 1.4. Which wavelets to choose?; 1.4.1. Number of vanishing moments, regularity, support (compactness), symmetry, etc.; 1.4.2. Well-known wavelets, scaling functions and associated filters; 1.4.2.1. Haar wavelet; 1.4.2.2. Daubechies wavelets; 1.4.2.3. Symlets; 1.4.2.4. Coiflets; 1.4.2.5. Meyer wavelets; 1.4.2.6. Polynomial spline wavelets; 1.5. Multiresolution analysis and biorthogonal wavelet bases
1.5.1. Why biorthogonal bases?1.5.2. Multiresolution context; 1.5.3. Example of biorthogonal wavelets, scaling functions and associated filters; 1.5.4. The concept of wavelet lifting; 1.5.4.1. The notion of lifting; 1.5.4.2. Significance of structure lifting; 1.6. Wavelet choice at a glance; 1.6.1. Regularity; 1.6.2. Vanishing moments; 1.6.3. Other criteria; 1.6.4. Conclusion; 1.7. Worked examples; 1.7.1. Examples of multiresolution analysis; 1.7.2. Compression; 1.7.3. Denoising (reduction of noise); 1.8. Some applications; 1.8.1. Discovery and contributions of wavelets
1.8.2. Biomedical engineering1.8.2.1. ECG, EEG and BCI; 1.8.2.2. Medical imaging; 1.8.3. Telecommunications; 1.8.3.1. Adaptive compression for sensor networks; 1.8.3.2. Masking image encoding and transmission errors; 1.8.3.3. Suppression of correlated noise; 1.8.4. "Compressive sensing", ICA, PCA and MRA; 1.8.4.1. Principal component analysis; 1.8.4.2. Independent component analysis; 1.8.4.3. Compressive sensing; 1.8.5. Conclusion; 1.9. Bibliography; Chapter 2. Discrete Wavelet Transform-Based Multifractal Analysis; 2.1. Introduction; 2.1.1. Fractals and wavelets: a happy marriage?
2.1.2. Background2.1.3. Mono/multifractal processes; 2.1.4. Chapter outline; 2.2. Fractality, variability and complexity; 2.2.1. System complexity; 2.2.2. Complex phenomena properties; 2.2.2.1. Tendency of autonomous agents to self-organize; 2.2.2.2. Variability and adaptability; 2.2.2.3. Bifurcation concept and chaotic model; 2.2.2.4. Hierarchy and scale invariance; 2.2.2.5. Self-organized critical phenomena; 2.2.2.6. Highly optimized tolerance; 2.2.3. Fractality; 2.3. Multifractal analysis; 2.3.1. Point-wise regularity; 2.3.2. Hölder exponent
2.3.3. Signal classification according to the regularity properties
Record Nr. UNINA-9911019499703321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spectral analysis : parametric and non-parametric digital methods / / edited by Francis Castanie
Spectral analysis : parametric and non-parametric digital methods / / edited by Francis Castanie
Edizione [1st ed.]
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE Ltd., 2006
Descrizione fisica 1 online resource (264 p.)
Disciplina 621.382/2
Altri autori (Persone) CastanieFrancis
Collana Digital signal and image processing series
Soggetto topico Signal processing - Digital techniques
Spectrum analysis - Statistical methods
ISBN 1-280-60344-5
9786610603442
1-84704-455-7
0-470-61219-3
0-470-39444-7
1-84704-555-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spectral Analysis; Table of Contents; Preface; Specific Notations; PART I. Tools and Spectral Analysis; Chapter 1. Fundamentals; 1.1. Classes of signals; 1.1.1. Deterministic signals; 1.1.2. Random signals; 1.2. Representations of signals; 1.2.1. Representations of deterministic signals; 1.2.1.1. Complete representations; 1.2.1.2. Partial representations; 1.2.2. Representations of random signals; 1.2.2.1. General approach; 1.2.2.2. 2nd order representations; 1.2.2.3. Higher order representations; 1.3. Spectral analysis: position of the problem; 1.4. Bibliography
Chapter 2. Digital Signal Processing2.1. Introduction; 2.2. Transform properties; 2.2.1. Some useful functions and series; 2.2.2. Fourier transform; 2.2.3. Fundamental properties; 2.2.4. Convolution sum; 2.2.5. Energy conservation (Parseval's theorem); 2.2.6. Other properties; 2.2.7. Examples; 2.2.8. Sampling; 2.2.9. Practical calculation, FFT; 2.3. Windows; 2.4. Examples of application; 2.4.1. LTI systems identification; 2.4.2. Monitoring spectral lines; 2.4.3. Spectral analysis of the coefficient of tide fluctuation; 2.5. Bibliography; Chapter 3. Estimation in Spectral Analysis
3.1. Introduction to estimation3.1.1. Formalization of the problem; 3.1.2. Cramér-Rao bounds; 3.1.3. Sequence of estimators; 3.1.4. Maximum likelihood estimation; 3.2. Estimation of 1st and 2nd order moments; 3.3. Periodogram analysis; 3.4. Analysis of estimators based on cxx (m); 3.4.1. Estimation of parameters of an AR model; 3.4.2. Estimation of a noisy cisoid by MUSIC; 3.5. Conclusion; 3.6. Bibliography; Chapter 4. Time-Series Models; 4.1. Introduction; 4.2. Linear models; 4.2.1. Stationary linear models; 4.2.2. Properties; 4.2.2.1. Stationarity; 4.2.2.2. Moments and spectra
4.2.2.3. Relation with Wold's decomposition4.2.3. Non-stationary linear models; 4.3. Exponential models; 4.3.1. Deterministic model; 4.3.2. Noisy deterministic model; 4.3.3. Models of random stationary signals; 4.4. Non-linear models; 4.5. Bibliography; PART II. Non-Parametric Methods; Chapter 5. Non-Parametric Methods; 5.1. Introduction; 5.2. Estimation of the power spectral density; 5.2.1. Filter bank method; 5.2.2. Periodogram method; 5.2.3. Periodogram variants; 5.3. Generalization to higher order spectra; 5.4. Bibliography; PART III. Parametric Methods
Chapter 6. Spectral Analysis by Stationary Time Series Modeling6.1. Parametric models; 6.2. Estimation of model parameters; 6.2.1. Estimation of AR parameters; 6.2.2. Estimation of ARMA parameters; 6.2.3. Estimation of Prony parameters; 6.2.4. Order selection criteria; 6.3. Properties of spectral estimators produced; 6.4. Bibliography; Chapter 7. Minimum Variance; 7.1. Principle of the MV method; 7.2. Properties of the MV estimator; 7.2.1. Expressions of the MV filter; 7.2.2. Probability density of the MV estimator; 7.2.3. Frequency resolution of the MV estimator
7.3. Link with the Fourier estimators
Record Nr. UNINA-9910826862903321
London ; ; Newport Beach, CA, : ISTE Ltd., 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui