Signal and image multiresolution analysis / / edited by Abdeljalil Ouahabi ; series editor, Francis Castanie
| Signal and image multiresolution analysis / / edited by Abdeljalil Ouahabi ; series editor, Francis Castanie |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (308 p.) |
| Disciplina | 621.3822 |
| Altri autori (Persone) |
OuahabiAbdeldjalil
CastanieFrancis |
| Collana | Digital signal and image processing series |
| Soggetto topico |
Signal processing
Image processing |
| ISBN |
9781118568767
1118568761 9781118568590 1118568591 9781118568668 1118568664 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Introduction to Multiresolution Analysis; 1.1. Introduction; 1.2. Wavelet transforms: an introductory review; 1.2.1. Brief history; 1.2.2. Continuous wavelet transforms; 1.2.2.1. Wavelet transform modulus maxima; 1.2.2.2. Reconstruction; 1.2.3. Discrete wavelet transforms; 1.3. Multiresolution; 1.3.1. Multiresolution analysis and wavelet bases; 1.3.1.1. Approximation spaces; 1.3.1.2. Detail spaces; 1.3.2. Multiresolution analysis: points to remember; 1.3.3. Decomposition and reconstruction
1.3.3.1. Calculation of coefficients1.3.3.2. Implementation of MRA: Mallat algorithm; 1.3.3.3. Extension to images; 1.3.4. Wavelet packets; 1.3.5. Multiresolution analysis summarized; 1.4. Which wavelets to choose?; 1.4.1. Number of vanishing moments, regularity, support (compactness), symmetry, etc.; 1.4.2. Well-known wavelets, scaling functions and associated filters; 1.4.2.1. Haar wavelet; 1.4.2.2. Daubechies wavelets; 1.4.2.3. Symlets; 1.4.2.4. Coiflets; 1.4.2.5. Meyer wavelets; 1.4.2.6. Polynomial spline wavelets; 1.5. Multiresolution analysis and biorthogonal wavelet bases 1.5.1. Why biorthogonal bases?1.5.2. Multiresolution context; 1.5.3. Example of biorthogonal wavelets, scaling functions and associated filters; 1.5.4. The concept of wavelet lifting; 1.5.4.1. The notion of lifting; 1.5.4.2. Significance of structure lifting; 1.6. Wavelet choice at a glance; 1.6.1. Regularity; 1.6.2. Vanishing moments; 1.6.3. Other criteria; 1.6.4. Conclusion; 1.7. Worked examples; 1.7.1. Examples of multiresolution analysis; 1.7.2. Compression; 1.7.3. Denoising (reduction of noise); 1.8. Some applications; 1.8.1. Discovery and contributions of wavelets 1.8.2. Biomedical engineering1.8.2.1. ECG, EEG and BCI; 1.8.2.2. Medical imaging; 1.8.3. Telecommunications; 1.8.3.1. Adaptive compression for sensor networks; 1.8.3.2. Masking image encoding and transmission errors; 1.8.3.3. Suppression of correlated noise; 1.8.4. "Compressive sensing", ICA, PCA and MRA; 1.8.4.1. Principal component analysis; 1.8.4.2. Independent component analysis; 1.8.4.3. Compressive sensing; 1.8.5. Conclusion; 1.9. Bibliography; Chapter 2. Discrete Wavelet Transform-Based Multifractal Analysis; 2.1. Introduction; 2.1.1. Fractals and wavelets: a happy marriage? 2.1.2. Background2.1.3. Mono/multifractal processes; 2.1.4. Chapter outline; 2.2. Fractality, variability and complexity; 2.2.1. System complexity; 2.2.2. Complex phenomena properties; 2.2.2.1. Tendency of autonomous agents to self-organize; 2.2.2.2. Variability and adaptability; 2.2.2.3. Bifurcation concept and chaotic model; 2.2.2.4. Hierarchy and scale invariance; 2.2.2.5. Self-organized critical phenomena; 2.2.2.6. Highly optimized tolerance; 2.2.3. Fractality; 2.3. Multifractal analysis; 2.3.1. Point-wise regularity; 2.3.2. Hölder exponent 2.3.3. Signal classification according to the regularity properties |
| Record Nr. | UNINA-9911019499703321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spectral analysis : parametric and non-parametric digital methods / / edited by Francis Castanie
| Spectral analysis : parametric and non-parametric digital methods / / edited by Francis Castanie |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE Ltd., 2006 |
| Descrizione fisica | 1 online resource (264 p.) |
| Disciplina | 621.382/2 |
| Altri autori (Persone) | CastanieFrancis |
| Collana | Digital signal and image processing series |
| Soggetto topico |
Signal processing - Digital techniques
Spectrum analysis - Statistical methods |
| ISBN |
1-280-60344-5
9786610603442 1-84704-455-7 0-470-61219-3 0-470-39444-7 1-84704-555-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Spectral Analysis; Table of Contents; Preface; Specific Notations; PART I. Tools and Spectral Analysis; Chapter 1. Fundamentals; 1.1. Classes of signals; 1.1.1. Deterministic signals; 1.1.2. Random signals; 1.2. Representations of signals; 1.2.1. Representations of deterministic signals; 1.2.1.1. Complete representations; 1.2.1.2. Partial representations; 1.2.2. Representations of random signals; 1.2.2.1. General approach; 1.2.2.2. 2nd order representations; 1.2.2.3. Higher order representations; 1.3. Spectral analysis: position of the problem; 1.4. Bibliography
Chapter 2. Digital Signal Processing2.1. Introduction; 2.2. Transform properties; 2.2.1. Some useful functions and series; 2.2.2. Fourier transform; 2.2.3. Fundamental properties; 2.2.4. Convolution sum; 2.2.5. Energy conservation (Parseval's theorem); 2.2.6. Other properties; 2.2.7. Examples; 2.2.8. Sampling; 2.2.9. Practical calculation, FFT; 2.3. Windows; 2.4. Examples of application; 2.4.1. LTI systems identification; 2.4.2. Monitoring spectral lines; 2.4.3. Spectral analysis of the coefficient of tide fluctuation; 2.5. Bibliography; Chapter 3. Estimation in Spectral Analysis 3.1. Introduction to estimation3.1.1. Formalization of the problem; 3.1.2. Cramér-Rao bounds; 3.1.3. Sequence of estimators; 3.1.4. Maximum likelihood estimation; 3.2. Estimation of 1st and 2nd order moments; 3.3. Periodogram analysis; 3.4. Analysis of estimators based on cxx (m); 3.4.1. Estimation of parameters of an AR model; 3.4.2. Estimation of a noisy cisoid by MUSIC; 3.5. Conclusion; 3.6. Bibliography; Chapter 4. Time-Series Models; 4.1. Introduction; 4.2. Linear models; 4.2.1. Stationary linear models; 4.2.2. Properties; 4.2.2.1. Stationarity; 4.2.2.2. Moments and spectra 4.2.2.3. Relation with Wold's decomposition4.2.3. Non-stationary linear models; 4.3. Exponential models; 4.3.1. Deterministic model; 4.3.2. Noisy deterministic model; 4.3.3. Models of random stationary signals; 4.4. Non-linear models; 4.5. Bibliography; PART II. Non-Parametric Methods; Chapter 5. Non-Parametric Methods; 5.1. Introduction; 5.2. Estimation of the power spectral density; 5.2.1. Filter bank method; 5.2.2. Periodogram method; 5.2.3. Periodogram variants; 5.3. Generalization to higher order spectra; 5.4. Bibliography; PART III. Parametric Methods Chapter 6. Spectral Analysis by Stationary Time Series Modeling6.1. Parametric models; 6.2. Estimation of model parameters; 6.2.1. Estimation of AR parameters; 6.2.2. Estimation of ARMA parameters; 6.2.3. Estimation of Prony parameters; 6.2.4. Order selection criteria; 6.3. Properties of spectral estimators produced; 6.4. Bibliography; Chapter 7. Minimum Variance; 7.1. Principle of the MV method; 7.2. Properties of the MV estimator; 7.2.1. Expressions of the MV filter; 7.2.2. Probability density of the MV estimator; 7.2.3. Frequency resolution of the MV estimator 7.3. Link with the Fourier estimators |
| Record Nr. | UNINA-9910826862903321 |
| London ; ; Newport Beach, CA, : ISTE Ltd., 2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||