Vai al contenuto principale della pagina

Advanced Markov chain Monte Carlo methods : learning from past samples / / Faming Liang, Chuanhai Liu, Raymond J. Carroll



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Liang F (Faming), <1970-> Visualizza persona
Titolo: Advanced Markov chain Monte Carlo methods : learning from past samples / / Faming Liang, Chuanhai Liu, Raymond J. Carroll Visualizza cluster
Pubblicazione: Hoboken, NJ, : Wiley, 2010
Descrizione fisica: 1 online resource (379 p.)
Disciplina: 518/.282
Soggetto topico: Monte Carlo method
Markov processes
Altri autori: LiuChuanhai <1959->  
CarrollRaymond J  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Advanced Markov Chain Monte Carlo Methods; Contents; Preface; Acknowledgments; Publisher's Acknowledgments; 1 Bayesian Inference and Markov Chain Monte Carlo; 2 The Gibbs Sampler; 3 The Metropolis-Hastings Algorithm; 4 Auxiliary Variable MCMC Methods; 5 Population-Based MCMC Methods; 6 Dynamic Weighting; 7 Stochastic Approximation Monte Carlo; 8 Markov Chain Monte Carlo with Adaptive Proposals; References; Index
Sommario/riassunto: Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features:Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems.A detailed discus
Titolo autorizzato: Advanced Markov chain Monte Carlo methods  Visualizza cluster
ISBN: 1-119-95680-3
1-282-66156-6
9786612661563
0-470-66972-1
0-470-66973-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910140556803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wiley series in computational statistics.