Bayesian and grAphical Models for Biomedical Imaging [[electronic resource] ] : First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers / / edited by M. Jorge Cardoso, Ivor Simpson, Tal Arbel, Doina Precup, Annemie Ribbens |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (X, 131 p. 54 illus.) |
Disciplina | 005.1 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer vision Pattern recognition systems Computer graphics Computer science—Mathematics Discrete mathematics Artificial Intelligence Computer Vision Automated Pattern Recognition Computer Graphics Discrete Mathematics in Computer Science |
ISBN | 3-319-12289-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996199681103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Bayesian and grAphical Models for Biomedical Imaging : First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers / / edited by M. Jorge Cardoso, Ivor Simpson, Tal Arbel, Doina Precup, Annemie Ribbens |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (X, 131 p. 54 illus.) |
Disciplina | 005.1 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer vision Pattern recognition systems Computer graphics Computer science—Mathematics Discrete mathematics Artificial Intelligence Computer Vision Automated Pattern Recognition Computer Graphics Discrete Mathematics in Computer Science |
ISBN | 3-319-12289-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910483386103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures [[electronic resource] ] : 4th International Workshop, CARE 2017, and 6th International Workshop, CLIP 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Xiongbiao Luo, Stefan Wesarg, Tobias Reichl, Miguel Ángel González Ballester, Jonathan McLeod, Klaus Drechsler, Terry Peters, Marius Erdt, Kensaku Mori, Marius George Linguraru, Andreas Uhl, Cristina Oyarzun Laura, Raj Shekhar |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIV, 182 p. 86 illus.) |
Disciplina | 006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Computer vision
Computer graphics Artificial intelligence Medical informatics Computer Vision Computer Graphics Artificial Intelligence Health Informatics |
ISBN | 3-319-67543-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996465978303316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Computer Assisted and Robotic Endoscopy and Clinical Image-Based Procedures : 4th International Workshop, CARE 2017, and 6th International Workshop, CLIP 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Xiongbiao Luo, Stefan Wesarg, Tobias Reichl, Miguel Ángel González Ballester, Jonathan McLeod, Klaus Drechsler, Terry Peters, Marius Erdt, Kensaku Mori, Marius George Linguraru, Andreas Uhl, Cristina Oyarzun Laura, Raj Shekhar |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIV, 182 p. 86 illus.) |
Disciplina | 006.37 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Computer vision
Computer graphics Artificial intelligence Medical informatics Computer Vision Computer Graphics Artificial Intelligence Health Informatics |
ISBN | 3-319-67543-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910483327203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo Papa, Anant Madabhushi, Jacinto C. Nascimento, Jaime S. Cardoso, Vasileios Belagiannis, Zhi Lu |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIX, 385 p. 169 illus.) |
Disciplina | 006.42 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Bioinformatics Logic design Image Processing and Computer Vision Artificial Intelligence Health Informatics Computational Biology/Bioinformatics Logic Design |
ISBN | 3-319-67558-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Workshop Editors -- Preface DLMIA 2017 -- Organization -- Preface ML-CDS 2017 -- Organization -- Contents -- Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017 -- Simultaneous Multiple Surface Segmentation Using Deep Learning -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Results -- 5 Discussion and Conclusion -- References -- A Deep Residual Inception Network for HEp-2 Cell Classification -- Abstract -- 1 Introduction -- 2 Deep Residual Inception -- 2.1 Network Architecture -- 2.2 DRI Module -- 2.3 Network Training -- 3 Results -- 3.1 Dataset -- 3.2 Data Augmentation -- 3.3 Performance Analysis -- 3.4 Comparisons -- 4 Conclusion -- References -- Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures -- 1 Introduction -- 2 Method -- 2.1 SharpMask Feature Fusion Architecture and CRF Refinement -- 2.2 Learning Anatomical Constraints -- 3 Experiments -- 3.1 Dataset and Pre-processing -- 3.2 Training -- 3.3 Results -- 4 Conclusions -- References -- Accelerated Magnetic Resonance Imaging by Adversarial Neural Network -- 1 Introduction -- 2 Method -- 2.1 K-space -- 2.2 Objective -- 2.3 Network Architecture -- 3 Experimental Results -- 4 Conclusions -- References -- Left Atrium Segmentation in CT Volumes with Fully Convolutional Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Preprocessing -- 3.2 Fully Convolutional Network -- 3.3 Shape Constraints -- 4 Experiments -- 5 Conclusion -- References -- 3D Randomized Connection Network with Graph-Based Inference -- 1 Introduction -- 2 Methodology -- 2.1 Convolutional LSTM and 3D Convolution -- 2.2 Randomized Connection Network -- 2.3 Graph-Based Inference -- 3 Experiment -- 4 Conclusion -- References -- Adversarial Training and Dilated Convolutions for Brain MRI Segmentation -- 1 Introduction.
2 Materials and Methods -- 2.1 Data -- 2.2 Network Architecture -- 2.3 Adversarial Training -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 Evaluation -- 4 Discussion and Conclusions -- References -- CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Preparation -- 3.2 Network Architecture and Training -- 3.3 Three Approaches to Drusen Segmentation -- 4 Experiments and Results -- 4.1 Cross-Validation Setup -- 4.2 Quantitative Evaluation -- 4.3 Robustness to Additional Pathology -- 4.4 3D Visualization of Results -- 5 Conclusion -- References -- Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images -- 1 Introduction -- 2 Data -- 3 Methodology -- 3.1 Localization Ground Truth -- 3.2 Network Architectures -- 3.3 Training -- 3.4 Region-Aware Term -- 3.5 Updated Loss Function -- 3.6 Experiments and Inference -- 4 Results and Discussions -- 5 Conclusion -- References -- Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 The Underlying CNN Architecture -- 2.3 Three Approaches to Handling Appearance Variability -- 2.4 Evaluation -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References -- Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks -- 1 Introduction -- 2 Methods -- 2.1 Lung Segmentation with Atrous Convolutions -- 2.2 Network-Wise Training of CNN -- 3 Computational Experiments -- 3.1 Performance Metrics -- 3.2 Quantatitive and Qualititive Results -- 4 Conclusion -- References -- Deep Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms -- 1 Introduction -- 2 Methods -- 2.1 Dataset. 2.2 Deep Residual Recurrent Neural Networks (RRNs) -- 3 Experiments -- 4 Results and Discussion -- 5 Conclusion and Future Works -- References -- Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Non-rigid Craniofacial 2D-3D Registration Using CNN-Based Regression -- 1 Introduction -- 2 Methods -- 2.1 Regression-Based 2D-3D Registration -- 2.2 CNN Based Regressor -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- A Deep Level Set Method for Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 The Level Set Method -- 2.2 The Integrated FCN-Levelset Model -- 3 Experiments and Results -- 3.1 Data -- 3.2 Experiments -- 3.3 Results -- 4 Discussion -- References -- Context-Based Normalization of Histological Stains Using Deep Convolutional Features -- 1 Introduction -- 2 Method -- 2.1 Feature-Aware Normalization -- 2.2 Normalization by Denoising -- 3 Experiments -- 4 Discussion -- References -- Transitioning Between Convolutional and Fully Connected Layers in Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Inception Module -- 3.2 Transition Module -- 4 Experiment -- 5 Results -- 5.1 Experiment 1: Comparison with Regularizers -- 5.2 Experiment 2: Comparing Architectures -- 5.3 Experiment 3: BreaKHis -- 6 Conclusion -- References -- Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Compute Mean Gray Matter CBF per Anatomical Region -- 3.2 Identify candidate regions for further analysis -- 3.3 Estimate Candidate Region Association Using a DNN -- 4 Results -- 4.1 Performance Comparison of the Learning Models -- 4.2 Statistical Significance of the Proposed Model -- 5 Discussion -- 6 Conclusions. References -- Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning -- 1 Introduction -- 2 Method -- 2.1 Multi-task Learning -- 2.2 Multi-task Deep Learning for Incomplete Multimodal Data -- 3 Materials, Preprocessing and Feature Extraction -- 4 Results and Discussions -- 5 Conclusion -- References -- A Multi-scale CNN and Curriculum Learning Strategy for Mammogram Classification -- 1 Introduction -- 2 Multi-scale CNN with Curriculum Learning Strategy -- 3 Experiments -- 4 Conclusions -- References -- Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning -- 1 Introduction -- 2 The ShonitSystem for Analysis of Peripheral Blood Smears -- 3 Deep Learning Techniques for Analyzing PBS Images -- 3.1 Cell Extraction -- 3.2 Cell Classification -- 4 Experimental Results -- 5 Conclusion -- References -- AGNet: Attention-Guided Network for Surgical Tool Presence Detection -- 1 Introduction -- 2 Attention-Guided Network -- 2.1 Global Prediction Network -- 2.2 Local Prediction Network -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Training Procedure -- 3.3 Ablation Analysis -- 3.4 Comparison with the State-of-the-Arts -- 4 Conclusion -- References -- Pathological Pulmonary Lobe Segmentation from CT Images Using Progressive Holistically Nested Neural Networks and Random Walker -- 1 Introduction -- 2 Method -- 2.1 Lobar Boundary Segmentation -- 2.2 3D Random Walker -- 3 Experiments and Results -- 4 Conclusion -- References -- End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network -- 1 Introduction -- 2 Method -- 3 Data -- 4 Experiments and Results -- 4.1 Registration of Handwritten Digits -- 4.2 Registration of Cardiac MRI -- 5 Discussion and Conclusion -- References. Stain Colour Normalisation to Improve Mitosis Detection on Breast Histology Images -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Method -- 4.1 Patch Generation -- 4.2 CNN Architecture -- 4.3 Training and Testing Workflow -- 5 Results and Discussion -- 6 Conclusion -- References -- 3D FCN Feature Driven Regression Forest-Based Pancreas Localization and Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Pancreas Localization -- 2.3 Patient-Specific Probabilistic Atlas Generation and Pancreas Segmentation -- 3 Experiments and Discussion -- References -- A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology -- 1 Introduction -- 2 Methodology -- 2.1 Whole Slide Image Handling -- 2.2 Deep Convolutional Neural Networks Based Mitosis Detection -- 2.3 Tumor Proliferation Score Prediction -- 3 Results -- 3.1 Datasets -- 3.2 Experiments -- 4 Conclusion -- References -- Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Loss Functions for Unbalanced Data -- 2.2 Deep Learning Framework -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 2D Results -- 3.3 3D Results -- 4 Discussion -- References -- ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features -- 1 Introduction -- 2 Method -- 2.1 Feature Generation Using a Convolutional Autoencoder -- 2.2 Deformable Image Registration Using a Spatial Transformer Network -- 3 Results -- 4 Discussion and Conclusion -- References -- Fully Convolutional Regression Network for Accurate Detection of Measurement Points -- 1 Introduction -- 2 Related Work -- 3 Regressing Point Locations -- 3.1 Fully Convolutional Network with Center of Mass Layer -- 3.2 Convolutional Long Short-Term Memory for Temporal Consistency -- 4 Results. 5 Conclusion. |
Record Nr. | UNISA-996465975403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo Papa, Anant Madabhushi, Jacinto C. Nascimento, Jaime S. Cardoso, Vasileios Belagiannis, Zhi Lu |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIX, 385 p. 169 illus.) |
Disciplina | 006.42 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Bioinformatics Logic design Image Processing and Computer Vision Artificial Intelligence Health Informatics Computational Biology/Bioinformatics Logic Design |
ISBN | 3-319-67558-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Workshop Editors -- Preface DLMIA 2017 -- Organization -- Preface ML-CDS 2017 -- Organization -- Contents -- Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017 -- Simultaneous Multiple Surface Segmentation Using Deep Learning -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Results -- 5 Discussion and Conclusion -- References -- A Deep Residual Inception Network for HEp-2 Cell Classification -- Abstract -- 1 Introduction -- 2 Deep Residual Inception -- 2.1 Network Architecture -- 2.2 DRI Module -- 2.3 Network Training -- 3 Results -- 3.1 Dataset -- 3.2 Data Augmentation -- 3.3 Performance Analysis -- 3.4 Comparisons -- 4 Conclusion -- References -- Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures -- 1 Introduction -- 2 Method -- 2.1 SharpMask Feature Fusion Architecture and CRF Refinement -- 2.2 Learning Anatomical Constraints -- 3 Experiments -- 3.1 Dataset and Pre-processing -- 3.2 Training -- 3.3 Results -- 4 Conclusions -- References -- Accelerated Magnetic Resonance Imaging by Adversarial Neural Network -- 1 Introduction -- 2 Method -- 2.1 K-space -- 2.2 Objective -- 2.3 Network Architecture -- 3 Experimental Results -- 4 Conclusions -- References -- Left Atrium Segmentation in CT Volumes with Fully Convolutional Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Preprocessing -- 3.2 Fully Convolutional Network -- 3.3 Shape Constraints -- 4 Experiments -- 5 Conclusion -- References -- 3D Randomized Connection Network with Graph-Based Inference -- 1 Introduction -- 2 Methodology -- 2.1 Convolutional LSTM and 3D Convolution -- 2.2 Randomized Connection Network -- 2.3 Graph-Based Inference -- 3 Experiment -- 4 Conclusion -- References -- Adversarial Training and Dilated Convolutions for Brain MRI Segmentation -- 1 Introduction.
2 Materials and Methods -- 2.1 Data -- 2.2 Network Architecture -- 2.3 Adversarial Training -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 Evaluation -- 4 Discussion and Conclusions -- References -- CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Preparation -- 3.2 Network Architecture and Training -- 3.3 Three Approaches to Drusen Segmentation -- 4 Experiments and Results -- 4.1 Cross-Validation Setup -- 4.2 Quantitative Evaluation -- 4.3 Robustness to Additional Pathology -- 4.4 3D Visualization of Results -- 5 Conclusion -- References -- Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images -- 1 Introduction -- 2 Data -- 3 Methodology -- 3.1 Localization Ground Truth -- 3.2 Network Architectures -- 3.3 Training -- 3.4 Region-Aware Term -- 3.5 Updated Loss Function -- 3.6 Experiments and Inference -- 4 Results and Discussions -- 5 Conclusion -- References -- Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 The Underlying CNN Architecture -- 2.3 Three Approaches to Handling Appearance Variability -- 2.4 Evaluation -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References -- Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks -- 1 Introduction -- 2 Methods -- 2.1 Lung Segmentation with Atrous Convolutions -- 2.2 Network-Wise Training of CNN -- 3 Computational Experiments -- 3.1 Performance Metrics -- 3.2 Quantatitive and Qualititive Results -- 4 Conclusion -- References -- Deep Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms -- 1 Introduction -- 2 Methods -- 2.1 Dataset. 2.2 Deep Residual Recurrent Neural Networks (RRNs) -- 3 Experiments -- 4 Results and Discussion -- 5 Conclusion and Future Works -- References -- Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Non-rigid Craniofacial 2D-3D Registration Using CNN-Based Regression -- 1 Introduction -- 2 Methods -- 2.1 Regression-Based 2D-3D Registration -- 2.2 CNN Based Regressor -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- A Deep Level Set Method for Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 The Level Set Method -- 2.2 The Integrated FCN-Levelset Model -- 3 Experiments and Results -- 3.1 Data -- 3.2 Experiments -- 3.3 Results -- 4 Discussion -- References -- Context-Based Normalization of Histological Stains Using Deep Convolutional Features -- 1 Introduction -- 2 Method -- 2.1 Feature-Aware Normalization -- 2.2 Normalization by Denoising -- 3 Experiments -- 4 Discussion -- References -- Transitioning Between Convolutional and Fully Connected Layers in Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Inception Module -- 3.2 Transition Module -- 4 Experiment -- 5 Results -- 5.1 Experiment 1: Comparison with Regularizers -- 5.2 Experiment 2: Comparing Architectures -- 5.3 Experiment 3: BreaKHis -- 6 Conclusion -- References -- Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Compute Mean Gray Matter CBF per Anatomical Region -- 3.2 Identify candidate regions for further analysis -- 3.3 Estimate Candidate Region Association Using a DNN -- 4 Results -- 4.1 Performance Comparison of the Learning Models -- 4.2 Statistical Significance of the Proposed Model -- 5 Discussion -- 6 Conclusions. References -- Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning -- 1 Introduction -- 2 Method -- 2.1 Multi-task Learning -- 2.2 Multi-task Deep Learning for Incomplete Multimodal Data -- 3 Materials, Preprocessing and Feature Extraction -- 4 Results and Discussions -- 5 Conclusion -- References -- A Multi-scale CNN and Curriculum Learning Strategy for Mammogram Classification -- 1 Introduction -- 2 Multi-scale CNN with Curriculum Learning Strategy -- 3 Experiments -- 4 Conclusions -- References -- Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning -- 1 Introduction -- 2 The ShonitSystem for Analysis of Peripheral Blood Smears -- 3 Deep Learning Techniques for Analyzing PBS Images -- 3.1 Cell Extraction -- 3.2 Cell Classification -- 4 Experimental Results -- 5 Conclusion -- References -- AGNet: Attention-Guided Network for Surgical Tool Presence Detection -- 1 Introduction -- 2 Attention-Guided Network -- 2.1 Global Prediction Network -- 2.2 Local Prediction Network -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Training Procedure -- 3.3 Ablation Analysis -- 3.4 Comparison with the State-of-the-Arts -- 4 Conclusion -- References -- Pathological Pulmonary Lobe Segmentation from CT Images Using Progressive Holistically Nested Neural Networks and Random Walker -- 1 Introduction -- 2 Method -- 2.1 Lobar Boundary Segmentation -- 2.2 3D Random Walker -- 3 Experiments and Results -- 4 Conclusion -- References -- End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network -- 1 Introduction -- 2 Method -- 3 Data -- 4 Experiments and Results -- 4.1 Registration of Handwritten Digits -- 4.2 Registration of Cardiac MRI -- 5 Discussion and Conclusion -- References. Stain Colour Normalisation to Improve Mitosis Detection on Breast Histology Images -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Method -- 4.1 Patch Generation -- 4.2 CNN Architecture -- 4.3 Training and Testing Workflow -- 5 Results and Discussion -- 6 Conclusion -- References -- 3D FCN Feature Driven Regression Forest-Based Pancreas Localization and Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Pancreas Localization -- 2.3 Patient-Specific Probabilistic Atlas Generation and Pancreas Segmentation -- 3 Experiments and Discussion -- References -- A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology -- 1 Introduction -- 2 Methodology -- 2.1 Whole Slide Image Handling -- 2.2 Deep Convolutional Neural Networks Based Mitosis Detection -- 2.3 Tumor Proliferation Score Prediction -- 3 Results -- 3.1 Datasets -- 3.2 Experiments -- 4 Conclusion -- References -- Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Loss Functions for Unbalanced Data -- 2.2 Deep Learning Framework -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 2D Results -- 3.3 3D Results -- 4 Discussion -- References -- ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features -- 1 Introduction -- 2 Method -- 2.1 Feature Generation Using a Convolutional Autoencoder -- 2.2 Deformable Image Registration Using a Spatial Transformer Network -- 3 Results -- 4 Discussion and Conclusion -- References -- Fully Convolutional Regression Network for Accurate Detection of Measurement Points -- 1 Introduction -- 2 Related Work -- 3 Regressing Point Locations -- 3.1 Fully Convolutional Network with Center of Mass Layer -- 3.2 Convolutional Long Short-Term Memory for Temporal Consistency -- 4 Results. 5 Conclusion. |
Record Nr. | UNINA-9910484561103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Domain Adaptation and Representation Transfer [[electronic resource] ] : 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings / / edited by Lisa Koch, M. Jorge Cardoso, Enzo Ferrante, Konstantinos Kamnitsas, Mobarakol Islam, Meirui Jiang, Nicola Rieke, Sotirios A. Tsaftaris, Dong Yang |
Autore | Koch Lisa |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (180 pages) |
Disciplina | 006 |
Altri autori (Persone) |
CardosoM. Jorge
FerranteEnzo KamnitsasKonstantinos IslamMobarakol JiangMeirui RiekeNicola TsaftarisSotirios A YangDong |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Image processing - Digital techniques
Computer vision Application software Machine learning Computers Information technology - Management Computer Imaging, Vision, Pattern Recognition and Graphics Computer and Information Systems Applications Machine Learning Computing Milieux Computer Application in Administrative Data Processing |
ISBN | 3-031-45857-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Domain adaptation of MRI scanners as an alternative to MRI harmonization -- MultiVT: Multiple-Task Framework for Dentistry -- Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation -- PLST: A Pseudo-Labels with a Smooth Transition Strategy for Medical Site Adaptation -- Compositional Representation Learning for Brain Tumor Segmentation -- Hierarchical Compositionality in Hyperbolic Space for Robust Medical Image Segmentation -- Realistic Data Enrichment for Robust Image Segmentation in Kidney Transplant Pathology -- Boosting Knowledge Distillation via Random Fourier Features for Prostate Cancer Grading in Histopathology Images -- Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse -- Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-Supervision -- The Performance of Transferability Metrics does not Translate to Medical Tasks -- DGM-DR: Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification -- SEDA: Self-Ensembling ViT with Defensive Distillation and Adversarial Training for robust Chest X-rays Classification -- A Continual Learning Approach for Cross-Domain White Blood Cell Classification -- Metadata Improves Segmentation Through Multitasking Elicitation -- Self-Prompting Large Vision Models for Few-Shot Medical Image Segmentation. |
Record Nr. | UNISA-996558468103316 |
Koch Lisa | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Domain Adaptation and Representation Transfer : 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings / / edited by Lisa Koch, M. Jorge Cardoso, Enzo Ferrante, Konstantinos Kamnitsas, Mobarakol Islam, Meirui Jiang, Nicola Rieke, Sotirios A. Tsaftaris, Dong Yang |
Autore | Koch Lisa |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (180 pages) |
Disciplina | 006 |
Altri autori (Persone) |
CardosoM. Jorge
FerranteEnzo KamnitsasKonstantinos IslamMobarakol JiangMeirui RiekeNicola TsaftarisSotirios A YangDong |
Collana | Lecture Notes in Computer Science |
Soggetto topico |
Image processing - Digital techniques
Computer vision Application software Machine learning Computers Information technology - Management Computer Imaging, Vision, Pattern Recognition and Graphics Computer and Information Systems Applications Machine Learning Computing Milieux Computer Application in Administrative Data Processing |
ISBN | 3-031-45857-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Domain adaptation of MRI scanners as an alternative to MRI harmonization -- MultiVT: Multiple-Task Framework for Dentistry -- Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation -- PLST: A Pseudo-Labels with a Smooth Transition Strategy for Medical Site Adaptation -- Compositional Representation Learning for Brain Tumor Segmentation -- Hierarchical Compositionality in Hyperbolic Space for Robust Medical Image Segmentation -- Realistic Data Enrichment for Robust Image Segmentation in Kidney Transplant Pathology -- Boosting Knowledge Distillation via Random Fourier Features for Prostate Cancer Grading in Histopathology Images -- Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse -- Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-Supervision -- The Performance of Transferability Metrics does not Translate to Medical Tasks -- DGM-DR: Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification -- SEDA: Self-Ensembling ViT with Defensive Distillation and Adversarial Training for robust Chest X-rays Classification -- A Continual Learning Approach for Cross-Domain White Blood Cell Classification -- Metadata Improves Segmentation Through Multitasking Elicitation -- Self-Prompting Large Vision Models for Few-Shot Medical Image Segmentation. |
Record Nr. | UNINA-9910760287203321 |
Koch Lisa | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data [[electronic resource] ] : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Fausto Milletari, Hien V. Nguyen, Shadi Albarqouni, M. Jorge Cardoso, Nicola Rieke, Ziyue Xu, Konstantinos Kamnitsas, Vishal Patel, Badri Roysam, Steve Jiang, Kevin Zhou, Khoa Luu, Ngan Le |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 254 p. 113 illus., 79 illus. in color.) |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Image Processing and Computer Vision Artificial Intelligence Health Informatics |
ISBN | 3-030-33391-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. |
Record Nr. | UNISA-996466435303316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data : First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings / / edited by Qian Wang, Fausto Milletari, Hien V. Nguyen, Shadi Albarqouni, M. Jorge Cardoso, Nicola Rieke, Ziyue Xu, Konstantinos Kamnitsas, Vishal Patel, Badri Roysam, Steve Jiang, Kevin Zhou, Khoa Luu, Ngan Le |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 254 p. 113 illus., 79 illus. in color.) |
Disciplina |
616.07540285
616.0754 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Image Processing and Computer Vision Artificial Intelligence Health Informatics |
ISBN | 3-030-33391-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. |
Record Nr. | UNINA-9910349274803321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|