Edizione | [1st ed.] |
Pubbl/distr/stampa |
New York, : Nova Science Publishers, c2012
|
Descrizione fisica |
1 online resource (310 p.)
|
Disciplina |
662/.669
|
Altri autori (Persone) |
CarasilloDomenic A
|
Collana |
Energy science, engineering and technology
|
Soggetto topico |
Liquid fuels
|
ISBN |
1-61470-513-5
|
Formato |
Materiale a stampa |
Livello bibliografico |
Monografia |
Lingua di pubblicazione |
eng
|
Nota di contenuto |
Intro -- LIQUID FUELS: TYPES, PROPERTIES AND PRODUCTION -- LIQUID FUELS: TYPES, PROPERTIES AND PRODUCTION -- CONTENTS -- PREFACE -- ULTRADEEP DESULFURIZATION OF LIQUID FUELS BY ADSORPTION UNDER THE AMBIENT CONDITIONS: ACTIVE SITES AND MOLECULAR MECHANISMS -- ABSTRACT -- 1. INTRODUCTION -- 2. SULFUR ORGANIC COMPOUNDS IN LIQUID FUELS -- 2.1. Concentration of Sulfur Organic Compounds in Liquid Fuels -- 2.2. Methods of Ultradeep Desulfurization of Liquid Fuels -- 2.3. Desulfurization of Liquid Fuels by Adsorption -- 2.4. Sulfur Organic Compounds in Liquid Fossil Fuels -- 2.5. Ultralow Sulfur Liquid Fuels for "Hydrogen Economy" -- 3. MECHANISMS OF FUEL DESULFURIZATION BY NON-REACTIVE ADSORPTION -- 3.1. Structure of Active Sites and Mechanisms of Desulfurization -- 3.2. Supported Silver as Desulfurization Sorbent -- 3.3. Activated Carbons as Desulfurization Sorbents -- 3.4. Supported Charge-Transfer Complexes -- 3.5. MOFs as Desulfurization Sorbents -- 3.6. Pervaporation Membranes as Desulfurization Sorbents -- 3.7. Studies of Adsorption Complexes by Quantum Chemistry -- 3.8. Supported Metal Cations as Desulfurization Sorbents: Multiple Active Sites -- 3.9. Synergetic Effects in Adsorptive Desulfurization of Liquid Fuels -- 3.10. Competitive Non-Reactive Adsorption on Desulfurization Sorbents -- 4. MECHANISMS OF FUEL DESULFURIZATION BY REACTIVE ADSORPTION -- 4.1. Desulfurization of Liquid Fuels via Metal-Sulfur Reaction -- 4.2. Reactive Adsorption on Acidic Surface Sites -- 4.3. Co-Adsorption of Fuel Additives with Sulfur Aromatic Compounds -- 5. MECHANISMS OF DESORPTION AND REGENERATION OF DESULFURIZATION SORBENTS -- 5.1. Non-Destructive Regeneration of Desulfurization Sorbents -- 5.2. Non-Oxidative Destructive Regeneration -- 5.3. Oxidative Destructive Regeneration -- CONCLUSION -- REFERENCES.
AN ANALYSIS OF COAL MINE METHANE EMISSIONS: AVAILABLE AND EMERGING UTILIZATION OR MITIGATION TECHNOLOGIES -- ABSTRACT -- 1. GENERAL PROPERTIES AND FORMATION OF METHANE -- 1.1. Environmental Effects of Methane -- 1.2. Sources of Methane -- 1.2.1. Agriculture -- 1.2.2. Energy -- 1.2.3. Wastes -- 1.3. General Properties of Methane -- 1.4. Chemical Properties of Methane -- I. Combustion -- II. Hydrogen Activation -- III. Reactions with Halogens -- 1.5. Coalification -- 2. METHANE EMISSIONS FROM COAL MINING -- 3. UTILIZATION OF COAL MINE METHANE (CMM) -- 3.1. Utilization Options of Drained Methane -- 3.1.1. Natural Gas Substitution -- 3.1.1.1. Rejecting the Undesirable Constituents -- 3.1.1.2. Blending the Gas with Higher Heating Value Gas -- 3.1.2. Brine Water Treatment -- 3.1.3. Coal Dryers -- 3.1.4. Heating Mine Ventilation Air and Mine Buildings -- 3.1.5. Local Industries -- 3.1.6. Power Generation -- 3.1.6.1. Gas Turbine -- 3.1.6.2. Micro Turbines -- 3.1.6.3. IC Engines -- 3.1.6.4. Fuel Cell -- 3.2. Utilization Options of Methane in Ventilation Air -- 3.2.1. Ancillary Use -- 3.2.1.1. Pulverized Coal-Fired Power Stations -- 3.2.1.2. IC Engines -- 3.2.1.3. Hybrid Waste/Coal Methane Combustion Units -- 3.2.2. Principal Use -- 3.2.2.1. Thermal Flow-Reversal Reactor (TFRR) -- 3.2.2.2. Catalytic Flow-Reversal Reactor (CFRR) -- 3.2.2.3. Catalytic- Monolith Reactors (CMR) -- 3.2.2.4. Lean-Burn Gas Turbines -- 3.2.2.5. Concentrators -- 4. WORLDWIDE USE OF COAL MINE METHANE -- I. China/CPA -- II. OECD Countries -- III. Non-EU FSU Countries -- CONCLUSIONS -- REFERENCES -- HIGH YIELD BIOFUEL PRODUCTION FROM VEGETABLE OILS WITH SUPERCRITICAL ALCOHOLS -- ABSTRACT -- 1. INTRODUCTION -- 2. SUPERCRITICAL FLUID TRANSESTERIFICATION -- 3. EXPERIMENTAL -- 3.1. Reagents and Material Description -- 3.2. Analysis.
3.3. Supercritical Methanol and Ethanol Transesterification Method -- 4. RESULTS AND DISCUSSIONS -- 4.1. Effect of Reaction Temperature, Pressure, and Concentration on Biodiesel Production in Supercritical Alcohols -- 4.2. Effect of Ultrasonic Treatment of the Mixture on Biodiesel Production in Supercritical Alcohols -- 5. THERMOPHYSICAL PROPERTIES OF PURE ALCOHOLS AND THEIR MIXTURES WITH VEGETABLE OILS AT SUPERCRITICAL CONDITIONS -- 5.1. Supercritical Methanol and Ethanol and Their Properties -- 5.2. Enthalpy of Transesterification Reaction of Vegetable Oils in the Supercritical Alcohols and Isobaric Heat Capacity Measurements: Experimental -- 5.3. Result and Discussion -- 6. ECONOMIC ANALYSIS OF THE PROCESS OF BIODIESEL FUEL PRODUCTION WITH SUPERCRITICAL ALCOHOLS -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- POLYMER WASTES PYROLYSIS FOR LIQUID FUEL PRODUCTION -- ABSTRACT -- 1. INTRODUCTION -- 2. LIQUID FUELS -- 2.1. Petroleum Hydrocarbon Structures -- 2.2. Main Refining Process -- 2.2.1. Distillation -- 2.2.2. Thermal Decomposition -- 2.2.3. Hydrocracking -- 2.2.4. Fluid Catalytic Cracking -- 2.2.5. Steam Cracking -- 2.2.6. Hydrogenation -- 2.2.7. Reforming -- 2.2.8. Filtration -- 2.3. Main Products -- 2.3.1. Light Products -- 2.3.2. Gasoline -- 2.3.3. Petroleum Naphtha -- 2.3.4. Kerosene -- 2.3.5. Diesel Fuel -- 2.3.6. Lubricants -- 2.3.7. Asphalt -- 2.3.7. Petroleum Coke -- 2.4. Rubber Tyre and Plastic Wastes Pyrolysis -- 2.4.1. Rubber Tyre Liquid Production -- 2.4.2. Plastics Liquid Production -- 2.4.3. Mixtures of Rubber Tyre and Plastics Liquid Production -- BIBLIOGRAPHY -- BIOFUEL PRODUCTION FROM CASTOR SEED OIL -- ABSTRACT -- 1. INTRODUCTION -- 2. GLOBAL BIOFUEL SCENARIOS -- 2.1. Indian Biofuel Scenario -- 3. BIODIESEL/BIO-FUEL -- 3.1. Castor (Ricinus Communis) -- 3.2. World Castor Scenario -- 3.3. India Castor Scenario.
3.4. Castor Oil in Food -- 3.5. Medicinal Use of Castor Oil -- 3.6. Traditional or Folk Medicines -- 3.7. Industrial Castor Oil -- 4. THE BIODIESEL REACTION -- 4.1. High Free Fatty Acid -- 4.3. Observations on Obtaining Castor Oil -- 5. BIODIESEL PROCESSES -- 5.1. Biodiesel Production Material -- 5.2. Production Process Details of Castor Methyl Ester from Castor (Ricinus Communis) Oil -- 5.2.1. Heating of Oil -- 5.2.2. Mixing of Methanol and Catalyst -- 5.2.3. Draining of Glycerin -- 5.2.4. Washing of Fuel -- 5.2.5. Air/Water Bubble Wash -- 6. TRANSESTERIFICATION (BIODIESEL REACTION FOR CASTOR OILS < -- 2.5%FFA) -- 6.1. Esterification (Pretreatment where FFA > -- 2.5%) -- 7. PROPERTIES OF BIODIESEL -- 7.1. Properties of Raw Castor (Ricinus Communis) Oil and Its Methyl Ester -- 7.1.1. Density -- 7.1.2. Kinematic Viscosity -- 7.1.3. Gross Calorific Valu -- 7.1.4. Bureau of Indian Standards (IS: 1359-1959) -- 7.1.5. Flash Point -- 7.1.6. Acid Value -- 7.1.7. Free Fatty Acid Content -- 8. EFFECT OF DIFFERENT BLENDS ON DENSITY AND CALORIFIC VALUE OF CASTOR METHYL ESTER -- 9. PERFORMANCE AND EMISSION TEST OF CASTOR METHYL ESTER ON SINGLE CYLINDER DIESEL ENGINE TEST RIG -- 9.1. Emission Test -- 9.2. Carbon Monoxide (CO) Emissions -- 9.3. Carbon Dioxide (CO2) Emissions -- 9.4. Nitrogen Oxide (Nox) Emissions -- 9.5. Oxygen (O2) Emissions -- 9.6. Smoke Density -- CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- CHARACTERIZATION OF MULTIFUEL ECO-BLEND (DIESEL-BIODIESEL-BIOETHANOL) FOR UNMODIFIED CI ENGINES -- NOMENCLATURE -- Greek Symbols -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Tested Fuels -- 2.2. Preparation of the Fuel Blends -- 2.3. Drop Combustion Laboratory Test -- 2.4. Brake-Stand Tests -- 2.5. On-Field Test Trials -- 3. THEORY OF MULTIFUEL DROP IGNITION -- 4. RESULTS -- 4.1. Combustion of the Single Drop of Oxygenated Fuels.
4.2. Brake-Stand Test Results -- 4.3. On-Field Test Results -- CONCLUSIONS -- REFERENCES -- PRODUCTION OF RENEWABLE LIQUID FUELS USING DIFFERENT FUEL PROCESSING METHODS -- ABSTRACT -- 1. INTRODUCTION -- 2. CHEMICAL REACTION DURING CONVENTIONAL TRANSESTERIFICATION OF VEGETABLE OILS -- 3. MATERIALS AND METHODS -- 3.1. Materials -- 4. RESULTS AND DISCUSSIONS -- 4.1. Biodiesel Productionmethods -- 4.1.1. Conentional Transesterifiction Method -- 4.1.2. Biodiesel Production Using Low Capacity Laboratory Scale Pressure Reactor -- 4.1.3. Microwave Assisted Continuous Transesterification Method -- 4.1.4. Comparison of Biodiesel Quality with Both Methods -- 4.2. Chemical Composition of Vegetable Oil and Its Structure -- 4.3. Fuel Processing -- 4.3.1. Fuel Properties -- 4.3.2. Viscosity -- 4.3.3. Cetane Number -- 4.3.4. Density -- 4.3.5. Flash Point -- 4.3.6. Calorifc Value -- 4.3.7. Cloud Point and Pour Point -- CONCLUSIONS -- REFERENCES -- ETHANOL FROM BIOMASS: APPLICATION TO THE OLIVE-PRUNING DEBRIS -- ABSTRACT -- INTRODUCTION -- LIGNOCELLUSIC BIOMASS PRETREATMENTS -- Ultrasonic Pre-Treatment -- Steam Explosion -- Autohydrolysis -- Pre-Treatment in Alkaline Medium -- Pre-Treatment with Dilute Acid -- AFEX Pre-Treatment -- Ozonation -- Extrusion -- ACID HYDROLYSIS -- diccionario - Ver Diccionario Detallado -- ENZYMATIC HYDROLYSIS -- FERMENTATION -- CONCLUSION -- REFERENCES -- LIQUID FUEL FOR NUCLEAR ENERGY: THE MOLTEN SALT FAST REACTOR (MSFR) CONCEPT -- ABSTRACT -- INTRODUCTION -- PART I. REVIEW OF MSR CONCEPTS -- Case#1: Inert Support and Minor Actinides (Minor Actinides Burner) -- Case#2: Fertile Material -- Case#3: Fertile and Fissile Materials -- Conclusion -- PART II. THE MOLTEN SALT FAST REACTOR (MSFR) -- II-A. Reactor Physics and Design -- II-A.1. Simulation Procedure -- II-A.2. MSFR Neutronic Core Description -- II-B. Reprocessing Scheme.
II-B.1. On-Line Extraction of Gaseous Fission Products and Noble Metals.
|
Record Nr. | UNINA-9910811015003321 |