top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Design and Analysis of Subgroups with Biopharmaceutical Applications [[electronic resource] /] / edited by Naitee Ting, Joseph C. Cappelleri, Shuyen Ho, (Din) Ding-Geng Chen
Design and Analysis of Subgroups with Biopharmaceutical Applications [[electronic resource] /] / edited by Naitee Ting, Joseph C. Cappelleri, Shuyen Ho, (Din) Ding-Geng Chen
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (404 pages)
Disciplina 615.10727
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Statistics 
Biostatistics
Pharmaceutical technology
Statistics for Life Sciences, Medicine, Health Sciences
Pharmaceutical Sciences/Technology
ISBN 3-030-40105-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Data-driven and Confirmatory Subgroup Analysis in Clinical Trials -- 2. Subgroup Analysis – A View from Industry -- 3. Biomarker-Targeted Confirmatory Trials -- 4. Considerations on Subgroup Analysis in Design and Analysis of Multi-Regional Clinical Trials -- 5. Practical Subgroup Identification Strategies in Late-stage Clinical Trials -- 6. Exploratory Subgroup Identification for Biopharmaceutical Development -- 7. Logical Inference on Treatment Efficacy When Subgroup Exists -- 8. The GUIDE Approach to Subgroup Identification and Inference -- 9. Use of the VG (Virtual Twins Combined with GUIDE) Method in the Development of Precision Medicines -- 10. Subgroups Identification for Tailored Therapies: a System of Methods, a Framework for Consistent Methodology Evaluation, and an Integrated Learn-and-confirm Approach -- 11. Developing and Validating Predictive Classifiers in Randomized Clinical Trials -- 12. Issues Related to Subgroup Analysis -- 13. Subgroup Analysis with Partial Linear Model -- 14. Subgroup Analysis in the 21st Century -- 15. Power of Statistical Tests for Subgroup Analysis in Meta-Analysis -- 16. Heterogeneity and Subgroup Analysis in Network Meta-Analysis.
Record Nr. UNISA-996418272103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Design and Analysis of Subgroups with Biopharmaceutical Applications / / edited by Naitee Ting, Joseph C. Cappelleri, Shuyen Ho, (Din) Ding-Geng Chen
Design and Analysis of Subgroups with Biopharmaceutical Applications / / edited by Naitee Ting, Joseph C. Cappelleri, Shuyen Ho, (Din) Ding-Geng Chen
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (404 pages)
Disciplina 615.10727
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Biometry
Pharmaceutical chemistry
Biostatistics
Pharmaceutics
ISBN 3-030-40105-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Data-driven and Confirmatory Subgroup Analysis in Clinical Trials -- 2. Subgroup Analysis – A View from Industry -- 3. Biomarker-Targeted Confirmatory Trials -- 4. Considerations on Subgroup Analysis in Design and Analysis of Multi-Regional Clinical Trials -- 5. Practical Subgroup Identification Strategies in Late-stage Clinical Trials -- 6. Exploratory Subgroup Identification for Biopharmaceutical Development -- 7. Logical Inference on Treatment Efficacy When Subgroup Exists -- 8. The GUIDE Approach to Subgroup Identification and Inference -- 9. Use of the VG (Virtual Twins Combined with GUIDE) Method in the Development of Precision Medicines -- 10. Subgroups Identification for Tailored Therapies: a System of Methods, a Framework for Consistent Methodology Evaluation, and an Integrated Learn-and-confirm Approach -- 11. Developing and Validating Predictive Classifiers in Randomized Clinical Trials -- 12. Issues Related to Subgroup Analysis -- 13. Subgroup Analysis with Partial Linear Model -- 14. Subgroup Analysis in the 21st Century -- 15. Power of Statistical Tests for Subgroup Analysis in Meta-Analysis -- 16. Heterogeneity and Subgroup Analysis in Network Meta-Analysis.
Record Nr. UNINA-9910484444203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri
Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVII, 254 p. 43 illus.)
Disciplina 570.15195
Collana ICSA Book Series in Statistics
Soggetto topico Biometry
Experimental design
Data mining
Biostatistics
Design of Experiments
Data Mining and Knowledge Discovery
ISBN 9783031671104
3031671104
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Emerging Topics in Dose-Finding and Beyond -- Understanding FDA Guidance On Dosage Optimization For Oncology Therapies -- FDA Project Optimus: The "Paradigm-Shifting" Initiative for Oncology Drug Development -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Monotonic Dose Response Assumption and Curve-Free Designs for Phase I Dose Finding Trials -- Dose Selection with 2-in-1 Design -- A Rank-Based Approach to Improve the Efficiency of Inferential Seamless Phase 2/3 Clinical Trials with Dose Optimization -- Comparing MCP-MOD and Ordinal Linear Contrast Test in Dose Finding Clinical Trials: A Thorough Examination -- Patient-Reported Tolerability in Drug Development -- Endpoint Development and Validation.
Record Nr. UNINA-9910983317403321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Phase II Clinical Development of New Drugs / / by Naitee Ting, Ding-Geng Chen, Shuyen Ho, Joseph C. Cappelleri
Phase II Clinical Development of New Drugs / / by Naitee Ting, Ding-Geng Chen, Shuyen Ho, Joseph C. Cappelleri
Autore Ting Naitee
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XVII, 241 p. 25 illus., 17 illus. in color.)
Disciplina 615.19
Collana ICSA Book Series in Statistics
Soggetto topico Statistics 
Pharmaceutical technology
Management
Statistics for Life Sciences, Medicine, Health Sciences
Pharmaceutical Sciences/Technology
ISBN 981-10-4194-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Introduction -- Chapter 2 Concept of Alpha -- Chapter 3 Confirmation and Exploration -- Chapter 4 Design a Proof of Concept (PoC) Trial -- Chapter 5 Design of Dose-Ranging Trials -- Chapter 6 Combining PoC and Dose Ranging Trials -- Chapter 7 Risks of Inconclusiveness -- Chapter 8 Analysis of a PoC Study -- Chapter 9 Data Analysis for Dose-Ranging Trials with Continuous Outcome -- Chapter 10 Data Analysis of Dose-Ranging Trials for Binary Outcomes -- Chapter 11 Bayesian Methods -- Chapter 12 Overview of Phase III Clinical Trials.
Record Nr. UNINA-9910254273803321
Ting Naitee  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Practical Approach to Quantitative Validation of Patient-Reported Outcomes : A Simulation-Based Guide Using SAS
A Practical Approach to Quantitative Validation of Patient-Reported Outcomes : A Simulation-Based Guide Using SAS
Autore Bushmakin Andrew G
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (365 pages)
Altri autori (Persone) CappelleriJoseph C
Collana Statistics in Practice Ser.
Soggetto genere / forma Electronic books.
ISBN 1-119-37635-1
1-119-37631-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction -- 1.1 What Is a PRO Measure? -- 1.2 Development of a PRO Measure -- 1.2.1 Concept Identification -- 1.2.1.1 Literature and Instrument Review -- 1.2.1.2 Patient-Centered Input -- 1.2.2 Item Development -- 1.2.3 Cognitive Interviews -- 1.2.4 Additional Considerations -- 1.2.5 Documentation of Development Process with Conceptual Framework -- 1.3 Psychometric Validation -- 1.3.1 Psychometric Evaluation Data -- 1.3.2 Psychometric Properties -- 1.3.2.1 Distributional Characteristics -- 1.3.2.2 Measurement Model Structure -- 1.3.2.3 Reliability -- 1.3.2.4 Construct Validity -- 1.3.2.5 Ability to Detect Change -- 1.3.2.6 Interpretation -- 1.4 Learning Through Simulations -- 1.5 Summary -- References -- Chapter 2 Validation Workflow -- 2.1 Clinical Trials as a Data Source for Validation -- 2.2 Validation Workflow for Single-Item Scales -- 2.3 Confirmatory Validation Workflow for Multi-item Multi-domain Scales -- 2.4 Validation Flow for a New Multi-item Multi-domain Scale -- 2.4.1 New Scale with Known Conceptual Framework -- 2.4.2 New Scale with Unknown Measurement Structure -- 2.5 Cross-Sectional Studies and Field Tests -- 2.6 Summary -- References -- Chapter 3 An Assessment of Classical Test Theory and Item Response Theory -- 3.1 Overview of Classical Test Theory -- 3.1.1 Basics -- 3.1.2 Illustration -- 3.1.3 Another Look -- 3.2 Person-Item Maps -- 3.2.1 CTT Revisited -- 3.2.2 Note on IRT -- 3.2.3 Implementation of Person-Item Maps -- 3.2.4 CTT-Based Scoring vs. IRT-Based Scoring -- 3.3 Summary -- References -- Chapter 4 Reliability -- 4.1 Reproducibility/Test-Retest -- 4.1.1 Measurement Error Model -- 4.1.2 Two Time Points -- 4.1.3 Random-Effects Model for ICC Estimation.
4.1.4 Test-Retest Reliability Assessment in the Context of Clinical Studies -- 4.1.4.1 Pre-Treatment/Pre-Baseline Data -- 4.1.4.2 Post-Baseline Data -- 4.1.4.3 Time Period Between Observations -- 4.1.5 Spearman-Brown Prophecy Formula -- 4.1.6 Domain Score Test-Retest vs. Item Test-Retest -- 4.1.7 Observer-Based and Interviewer-Based Scales -- 4.1.8 Uncovering True Relationship Between Measurements -- 4.1.8.1 Accounting for Measurement Error -- 4.1.8.2 Measurement Error Model with Two Observations -- 4.2 Cronbach's Alpha -- 4.2.1 Likert-Type Scales -- 4.2.2 Dichotomous Items -- 4.3 Summary -- References -- Chapter 5 Construct Validity and Criterion Validity -- 5.1 Exploratory Factor Analyses -- 5.1.1 Modeling Assumptions -- 5.1.2 Exploratory Factor Analysis Implementation -- 5.1.3 Evaluating the Number of Factors and Factor Loadings -- 5.1.3.1 Scree Plot -- 5.1.3.2 Correlated Latent Factors -- 5.1.3.3 Parallel Analysis with Reduced Correlation Matrix -- 5.1.3.4 Factor Loadings -- 5.2 Confirmatory Factor Analyses -- 5.2.1 Confirmatory Factor Analysis Model -- 5.2.2 Confirmatory Factor Analysis Model Implementation -- 5.2.3 Confirmatory Factor Analysis with Domains Represented by a Single Item -- 5.2.4 Second-Order Confirmatory Factor Analysis -- 5.2.4.1 Implementation of the Model with at Least Three First-Order Latent Domains -- 5.2.4.2 Implementation of the Model with Two First-Order Latent Domains -- 5.2.5 Formative vs. Reflective Model -- 5.2.6 Bifactor Model -- 5.2.7 Confirmatory Factor Analysis Using Polychoric Correlations -- 5.3 Convergent and Discriminant Validity -- 5.3.1 Convergent and Discriminant Validity Assessment -- 5.3.2 Convergent and Discriminant Validity Evaluation in a Clinical Study -- 5.4 Known-Groups Validity -- 5.5 Criterion Validity -- 5.6 Summary -- References -- Chapter 6 Responsiveness and Sensitivity.
6.1 Ability to Detect Change -- 6.1.1 Definitions and Concepts -- 6.1.2 Ability to Detect Change Analysis Implementation -- 6.1.3 Correlation Analysis to Support Ability to Detect Change -- 6.1.4 Deconstructing Correlation Between Changes -- 6.2 Sensitivity to Treatment -- 6.2.1 What Is the Sensitivity to Treatment? -- 6.2.2 Concurrent Estimation of the Treatment Effects for a Multi-Domain Scale -- 6.2.2.1 Assessment of the Treatment Effect for a Single Domain -- 6.2.2.2 Assessment of the Treatment Effects for a Multi-Domain Scale -- 6.3 Summary -- References -- Chapter 7 Interpretation of Patient-Reported Outcome Findings -- 7.1 Meaningful Within-Patient Change -- 7.1.1 Definitions and Concepts -- 7.1.2 Anchor-Based Method to Assess Meaningful Within-Patient Change -- 7.1.3 Cumulative Distribution Functions to Supplement Anchor-Based Methods -- 7.2 Clinical Important Difference -- 7.2.1 Meaningful Within-Patient Change Versus Between-Group Difference -- 7.2.2 Anchor-Based Method to Assess Clinically Important Difference -- 7.3 Responder Analyses and Cumulative Distribution Functions -- 7.3.1 Treatment Effect Model -- 7.3.2 MWPC Application: A Responder Analysis -- 7.3.3 Using CDFs for Interpretation of Results -- 7.4 Summary -- References -- Index -- EULA.
Record Nr. UNINA-9910623984003321
Bushmakin Andrew G  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui