top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910453334503321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems [[electronic resource] /] / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910782591603321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems / / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Advanced topics on cellular self-organizing nets and chaotic nonlinear dynamics to model and control complex systems / / edited by Riccardo Caponetto, Luigi Fortuna, Mattia Frasca
Edizione [1st ed.]
Pubbl/distr/stampa Hackensakc, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (200 p.)
Disciplina 511.3/52
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
FortunaL <1953-> (Luigi)
FrascaMattia
Collana World Scientific series on nonlinear science
Soggetto topico Computational complexity
Nonlinear systems - Mathematical models
Self-organizing maps
System theory - Mathematical models
ISBN 1-281-96803-X
9786611968038
981-281-405-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contributors; List of People Involved in the FIRB Project; Contents; 1. The CNN Paradigm for Complexity; 1.1 Introduction; 1.2 The 3D-CNN Model; 1.3 E3: An Universal Emulator for Complex Systems; 1.4 Emergence of Forms in 3D-CNNs; 1.4.1 Initial conditions; 1.4.2 3D waves in homogeneous and unhomogeneous media; 1.4.3 Chua's circuit; 1.4.4 Lorenz system; 1.4.5 Rössler system; 1.4.6 FitzHugh-Nagumo neuron model; 1.4.7 Hindmarsh-Rose neuron model; 1.4.8 Inferior-Olive neuronmodel; 1.4.9 Izhikevich neuronmodel; 1.4.10 Neuron model exhibiting homoclinic chaos; 1.5 Conclusions
2. Emergent Phenomena in Neuroscience2.1 Introductory Material: Neurons and Models; 2.1.1 Models of excitability; 2.1.2 The Hodgkin-Huxley model; 2.1.3 The FitzHugh-Nagumo model; 2.1.4 Class I and class II excitability; 2.1.5 Other neuronmodels; 2.2 Electronic Implementation of NeuronModels; 2.2.1 Implementation of single cell neuron dynamics; 2.2.2 Implementation of systems with many neurons; 2.3 Local Activity Theory for Systems of IO Neurons; 2.3.1 The theory of local activity for one-port and two-port systems
2.3.2 The local activity and the edge of chaos regions of the inferior olive neuron2.4 Simulation of IO Systems: Emerging Results; 2.4.1 The paradigm of local active wave computation for image processing; 2.4.2 Local active wave computation based paradigm: 3D-shape processing; 2.5 Networks of HR Neurons; 2.5.1 The neural model; 2.5.2 Parameters for dynamical analysis; 2.5.3 Dynamical effects of topology on synchronization; 2.6 Neurons in Presence of Noise; 2.7 Conclusions; 3. Frequency Analysis and Identification in Atomic Force Microscopy; 3.1 Introduction; 3.2 AFM Modeling
3.2.1 Piecewise interaction force3.2.2 Lennard Jones-like interaction force; 3.3 Frequency Analysis via Harmonic Balance; 3.3.1 Piecewise interaction model analysis; 3.3.2 Lennard Jones-like hysteretic model analysis; 3.4 Identification of the Tip-Sample Force Model; 3.4.1 Identification method; 3.4.2 Experimental results; 3.5 Conclusions; References; 4. Control and Parameter Estimation of Systems with Low-Dimensional Chaos - The Role of Peak-to-Peak Dynamics; 4.1 Introduction; 4.2 Peak-to-Peak Dynamics; 4.3 Control System Design; 4.3.1 PPD modeling and control
4.3.2 The impact of noise and sampling frequency4.3.3 PPD reconstruction; 4.4 Parameter Estimation; 4.4.1 Derivation of the "empirical PPP"; 4.4.2 Interpolation of the "empirical PPP"; 4.4.3 Optimization; 4.4.4 Example of application; 4.5 Concluding Remarks; References; 5. Synchronization of Complex Networks; 5.1 Introduction; 5.2 Synchronization of Interacting Oscillators; 5.3 From Local to Long-Range Connections; 5.4 The Master Stability Function; 5.4.1 The case of continuous time systems; 5.4.2 The Master stability function for coupled maps
5.5 Key Elements for the Assessing of Synchronizability
Record Nr. UNINA-9910825960903321
Hackensakc, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910456148203321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems [[electronic resource] ] : modeling and control applications / / Riccardo Caponetto ... [et al.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910780886903321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional order systems : modeling and control applications / / Riccardo Caponetto ... [et al.]
Fractional order systems : modeling and control applications / / Riccardo Caponetto ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : World Scientific, c2010
Descrizione fisica 1 online resource (200 p.)
Disciplina 515.83
Altri autori (Persone) CaponettoR <1966-> (Riccardo)
Collana World Scientific Series on Nonlinear Science: Series A
Soggetto topico Fractional calculus
Nonlinear systems - Mathematical models
Control theory - Mathematical models
ISBN 1-282-76371-7
9786612763717
981-4304-20-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Acknowledgments; Contents; List of Figures; List of Tables; 1. Fractional Order Systems; 2. Fractional Order PID Controller and their Stability Regions Definition; 3. Fractional Order Chaotic Systems; 4. Field Programmable Gate Array Implementation; 5. Microprocessor Implementation and Applications; 6. Field Programmable Analog Array Implementation; 7. Switched Capacitor Integrated Circuit Design; 8. Fractional Order Model of IPMC; Bibliography; Index
Record Nr. UNINA-9910822799303321
Singapore, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui