top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.]
Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.]
Pubbl/distr/stampa Chichester, England : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (331 pages)
Disciplina 005.74
Collana IEEE Press Ser.
Soggetto topico Wireless communication systems - Industrial applications
Blockchains (Databases)
Personal communication service systems
Soggetto genere / forma Electronic books.
ISBN 1-119-79082-4
1-119-79083-2
1-119-79081-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Abbreviations -- Chapter 1 What is Blockchain Radio Access Network? -- 1.1 Introduction -- 1.2 What is B‐RAN -- 1.2.1 B‐RAN Framework -- 1.2.2 Consensus Mechanism -- 1.2.3 Implementation -- 1.3 Mining Model -- 1.3.1 Hash‐Based Mining -- 1.3.2 Modeling of Hash Trials -- 1.3.3 Threat Model -- 1.4 B‐RAN Queuing Model -- 1.5 Latency Analysis of B‐RAN -- 1.5.1 Steady‐State Analysis -- 1.5.2 Average Service Latency -- 1.6 Security Considerations -- 1.6.1 Alternative History Attack -- 1.6.2 Probability of a Successful Attack -- 1.7 Latency‐Security Trade‐off -- 1.8 Conclusions and Future Works -- 1.8.1 Network Effect and Congest Effect -- 1.8.2 Chicken and Eggs -- 1.8.3 Decentralization and Centralization -- 1.8.4 Beyond Bitcoin Blockchain -- References -- Chapter 2 Consensus Algorithm Analysis in Blockchain: PoW and Raft -- 2.1 Introduction -- 2.2 Mining Strategy Analysis for the PoW Consensus‐Based Blockchain -- 2.2.1 Blockchain Preliminaries -- 2.2.2 Proof of Work and Mining -- 2.2.3 Honest Mining Strategy -- 2.2.4 PoW Blockchain Mining Model -- 2.2.4.1 State -- 2.2.4.2 Action -- 2.2.4.3 Transition and Reward -- 2.2.4.4 Objective Function -- 2.2.4.5 Honest Mining -- 2.2.4.6 Selfish Mining -- 2.2.4.7 Lead Stubborn Mining -- 2.2.4.8 Optimal Mining -- 2.2.5 Mining Through RL -- 2.2.5.1 Preliminaries for Original Reinforcement Learning Algorithm -- 2.2.5.2 New Reinforcement Learning Algorithm for Mining -- 2.2.6 Performance Evaluations -- 2.3 Performance Analysis of the Raft Consensus Algorithm -- 2.3.1 Review of Raft Algorithm -- 2.3.2 System Model -- 2.3.3 Network Model -- 2.3.4 Network Split Probability -- 2.3.5 Average Number of Replies -- 2.3.6 Expected Number of Received Heartbeats for a Follower -- 2.3.7 Time to Transition to Candidate.
2.3.8 Time to Elect a New Leader -- 2.3.9 Simulation Results -- 2.3.10 Discussion -- 2.3.10.1 Extended Model -- 2.3.10.2 System Availability and Consensus Efficiency -- 2.4 Conclusion -- References -- Chapter 3 A Low Communication Complexity Double‐layer PBFT Consensus -- 3.1 Introduction -- 3.1.1 PBFT Applied to Blockchain -- 3.1.2 From CFT to BFT -- 3.1.2.1 State Machine Replication -- 3.1.2.2 Primary Copy -- 3.1.2.3 Quorum Voting -- 3.1.3 Byzantine Generals Problem -- 3.1.4 Byzantine Consensus Protocols -- 3.1.4.1 Two‐Phase Commit -- 3.1.4.2 View Stamp -- 3.1.4.3 PBFT Protocol -- 3.1.5 Motivations -- 3.1.6 Chapter Organizations -- 3.2 Double‐Layer PBFT‐Based Protocol -- 3.2.1 Consensus Flow -- 3.2.1.1 The Client -- 3.2.1.2 First‐Layer Protocol -- 3.2.1.3 Second‐Layer Protocol -- 3.2.2 Faulty Primary Elimination -- 3.2.2.1 Faulty Primary Detection -- 3.2.2.2 View Change -- 3.2.3 Garbage Cleaning -- 3.3 Communication Reduction -- 3.3.1 Operation Synchronization -- 3.3.2 Safety and Liveness -- 3.4 Communication Complexity of Double‐Layer PBFT -- 3.5 Security Threshold Analysis -- 3.5.1 Faulty Probability Determined -- 3.5.2 Faulty Number Determined -- 3.6 Conclusion -- References -- Chapter 4 Blockchain‐Driven Internet of Things -- 4.1 Introduction -- 4.1.1 Challenges and Issues in IoT -- 4.1.2 Advantages of Blockchain for IoT -- 4.1.3 Integration of IoT and Blockchain -- 4.2 Consensus Mechanism in Blockchain -- 4.2.1 PoW -- 4.2.2 PoS -- 4.2.3 Limitations of PoW and PoS for IoT -- 4.2.3.1 Resource Consumption -- 4.2.3.2 Transaction Fee -- 4.2.3.3 Throughput Limitation -- 4.2.3.4 Confirmation Delay -- 4.2.4 PBFT -- 4.2.5 DAG -- 4.2.5.1 Tangle -- 4.2.5.2 Hashgraph -- 4.3 Applications of Blockchain in IoT -- 4.3.1 Supply Chain -- 4.3.1.1 Introduction -- 4.3.1.2 Modified Blockchain -- 4.3.1.3 Integrated Architecture -- 4.3.1.4 Security Analysis.
4.3.2 Smart City -- 4.3.2.1 Introduction -- 4.3.2.2 Smart Contract System -- 4.3.2.3 Main Functions of the Framework -- 4.3.2.4 Discussion -- 4.4 Issues and Challenges of Blockchain in IoT -- 4.4.1 Resource Constraints -- 4.4.2 Security Vulnerability -- 4.4.3 Privacy Leakage -- 4.4.4 Incentive Mechanism -- 4.5 Conclusion -- References -- Chapter 5 Hyperledger Blockchain‐Based Distributed Marketplaces for 5G Networks -- 5.1 Introduction -- 5.2 Marketplaces in Telecommunications -- 5.2.1 Wireless Spectrum Allocation -- 5.2.2 Network Slicing -- 5.2.3 Passive optical networks (PON) Sharing -- 5.2.4 Enterprise Blockchain: Hyperledger Fabric -- 5.2.4.1 Shared Ledger -- 5.2.4.2 Organizations -- 5.2.4.3 Consensus Protocol -- 5.2.4.4 Network Peers -- 5.2.4.5 Smart Contracts (chaincodes) -- 5.2.4.6 Channels -- 5.3 Distributed Resource Sharing Market -- 5.3.1 Market Mechanism (Auction) -- 5.3.2 Preliminaries -- 5.4 Experimental Design and Results -- 5.4.1 Experimental Blockchain Deployment -- 5.4.1.1 Cloud Infrastructure -- 5.4.1.2 Container Orchestration: Docker Swarm -- 5.4.2 Blockchain Performance Evaluation -- 5.4.3 Benchmark Apparatus -- 5.4.3.1 Hyperledger Caliper -- 5.4.3.2 Data Collection: Prometheus Monitor -- 5.4.4 Experimental Results -- 5.4.4.1 Maximum Transaction Throughput -- 5.4.4.2 Block Size -- 5.4.4.3 Network Size -- 5.5 Conclusions -- References -- Chapter 6 Blockchain for Spectrum Management in 6G Networks -- 6.1 Introduction -- 6.2 Background -- 6.2.1 Rise of Micro‐operators -- 6.2.2 Case for Novel Spectrum Sharing Models -- 6.2.2.1 Blockchain for Spectrum Sharing -- 6.2.2.2 Blockchain in 6G Networks -- 6.3 Architecture of an Integrated SDN and Blockchain Model -- 6.3.1 SDN Platform Design -- 6.3.2 Blockchain Network Layer Design -- 6.3.3 Network Operation and Spectrum Management -- 6.4 Simulation Design -- 6.5 Results and Analysis.
6.5.1 Radio Access Network and Throughput -- 6.5.2 Blockchain Performance -- 6.5.3 Blockchain Scalability Performance -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Integration of MEC and Blockchain -- 7.1 Introduction -- 7.2 Typical Framework -- 7.2.1 Blockchain‐Enabled MEC -- 7.2.1.1 Background -- 7.2.1.2 Framework Description -- 7.2.2 MEC‐Based Blockchain -- 7.2.2.1 Background -- 7.2.2.2 Framework Description -- 7.3 Use Cases -- 7.3.1 Security Federated Learning via MEC‐Enabled Blockchain Network -- 7.3.1.1 Background -- 7.3.1.2 Blockchain‐Driven Federated Learning -- 7.3.1.3 Experimental Results -- 7.3.2 Blockchain‐Assisted Secure Authentication for Cross‐Domain Industrial IoT -- 7.3.2.1 Background -- 7.3.2.2 Blockchain‐Driven Cross‐Domain Authentication -- 7.3.2.3 Experimental Results -- 7.4 Conclusion -- References -- Chapter 8 Performance Analysis on Wireless Blockchain IoT System -- 8.1 Introduction -- 8.2 System Model -- 8.2.1 Blockchain‐Enabled IoT Network Model -- 8.2.2 Wireless Communication Model -- 8.3 Performance Analysis in Blockchain‐Enabled Wireless IoT Networks -- 8.3.1 Probability Density Function of SINR -- 8.3.2 TDP Transmission Successful Rate -- 8.3.3 Overall Communication Throughput -- 8.4 Optimal FN Deployment -- 8.5 Security Performance Analysis -- 8.5.1 Eclipse Attacks -- 8.5.2 Random Link Attacks -- 8.5.3 Random FN Attacks -- 8.6 Numerical Results and Discussion -- 8.6.1 Simulation Settings -- 8.6.2 Performance Evaluation without Attacks -- 8.7 Chapter Summary -- References -- Chapter 9 Utilizing Blockchain as a Citizen‐Utility for Future Smart Grids -- 9.1 Introduction -- 9.2 DET Using Citizen‐Utilities -- 9.2.1 Prosumer Community Groups -- 9.2.1.1 Microgrids -- 9.2.1.2 Virtual Power Plants (VPP) -- 9.2.1.3 Vehicular Energy Networks (VEN) -- 9.2.2 Demand Side Management -- 9.2.2.1 Energy Efficiency.
9.2.2.2 Demand Response -- 9.2.2.3 Spinning Reserves -- 9.2.3 Open Research Challenges -- 9.2.3.1 Scalability and IoT Overhead Issues -- 9.2.3.2 Privacy Leakage Issues -- 9.2.3.3 Standardization and Interoperability Issues -- 9.3 Improved Citizen‐Utilities -- 9.3.1 Toward Scalable Citizen‐Utilities -- 9.3.1.1 Challenges -- 9.3.1.2 HARB Framework‐Based Citizen‐Utility -- 9.3.2 Toward Privacy‐Preserving Citizen‐Utilities -- 9.3.2.1 Threat Model -- 9.3.2.2 PDCH System -- 9.4 Conclusions -- References -- Chapter 10 Blockchain‐enabled COVID‐19 Contact Tracing Solutions -- 10.1 Introduction -- 10.2 Preliminaries of BeepTrace -- 10.2.1 Motivation -- 10.2.1.1 Comprehensive Privacy Protection -- 10.2.1.2 Performance is Uncompromising -- 10.2.1.3 Broad Community Participation -- 10.2.1.4 Inclusiveness and Openness -- 10.2.2 Two Implementations are Based on Different Matching Protocols -- 10.3 Modes of BeepTrace -- 10.3.1 BeepTrace‐Active -- 10.3.1.1 Active Mode Workflow -- 10.3.1.2 Privacy Protection of BeepTrace‐Active -- 10.3.2 BeepTrace‐Passive -- 10.3.2.1 Two‐Chain Architecture and Workflow -- 10.3.2.2 Privacy Protection in BeepTrace‐Passive -- 10.4 Future Opportunity and Conclusions -- 10.4.1 Preliminary Approach -- 10.4.2 Future Directions -- 10.4.2.1 Network Throughput and Scalability -- 10.4.2.2 Technology for Elders and Minors -- 10.4.2.3 Battery Drainage and Storage Optimization -- 10.4.2.4 Social and Economic Aspects -- 10.4.3 Concluding Remarks -- References -- Chapter 11 Blockchain Medical Data Sharing -- 11.1 Introduction -- 11.1.1 General Overview -- 11.1.2 Defining Challenges -- 11.1.2.1 Data Security -- 11.1.2.2 Data Privacy -- 11.1.2.3 Source Identity -- 11.1.2.4 Data Utility -- 11.1.2.5 Data Interoperability -- 11.1.2.6 Trust -- 11.1.2.7 Data Provenance -- 11.1.2.8 Authenticity -- 11.1.3 Sharing Paradigms.
11.1.3.1 Institution‐to‐Institution Data Sharing.
Record Nr. UNINA-9910555252103321
Chichester, England : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.]
Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.]
Pubbl/distr/stampa Chichester, England : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (331 pages)
Disciplina 005.74
Collana IEEE Press
Soggetto topico Wireless communication systems - Industrial applications
Blockchains (Databases)
Personal communication service systems
ISBN 1-119-79082-4
1-119-79083-2
1-119-79081-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Abbreviations -- Chapter 1 What is Blockchain Radio Access Network? -- 1.1 Introduction -- 1.2 What is B‐RAN -- 1.2.1 B‐RAN Framework -- 1.2.2 Consensus Mechanism -- 1.2.3 Implementation -- 1.3 Mining Model -- 1.3.1 Hash‐Based Mining -- 1.3.2 Modeling of Hash Trials -- 1.3.3 Threat Model -- 1.4 B‐RAN Queuing Model -- 1.5 Latency Analysis of B‐RAN -- 1.5.1 Steady‐State Analysis -- 1.5.2 Average Service Latency -- 1.6 Security Considerations -- 1.6.1 Alternative History Attack -- 1.6.2 Probability of a Successful Attack -- 1.7 Latency‐Security Trade‐off -- 1.8 Conclusions and Future Works -- 1.8.1 Network Effect and Congest Effect -- 1.8.2 Chicken and Eggs -- 1.8.3 Decentralization and Centralization -- 1.8.4 Beyond Bitcoin Blockchain -- References -- Chapter 2 Consensus Algorithm Analysis in Blockchain: PoW and Raft -- 2.1 Introduction -- 2.2 Mining Strategy Analysis for the PoW Consensus‐Based Blockchain -- 2.2.1 Blockchain Preliminaries -- 2.2.2 Proof of Work and Mining -- 2.2.3 Honest Mining Strategy -- 2.2.4 PoW Blockchain Mining Model -- 2.2.4.1 State -- 2.2.4.2 Action -- 2.2.4.3 Transition and Reward -- 2.2.4.4 Objective Function -- 2.2.4.5 Honest Mining -- 2.2.4.6 Selfish Mining -- 2.2.4.7 Lead Stubborn Mining -- 2.2.4.8 Optimal Mining -- 2.2.5 Mining Through RL -- 2.2.5.1 Preliminaries for Original Reinforcement Learning Algorithm -- 2.2.5.2 New Reinforcement Learning Algorithm for Mining -- 2.2.6 Performance Evaluations -- 2.3 Performance Analysis of the Raft Consensus Algorithm -- 2.3.1 Review of Raft Algorithm -- 2.3.2 System Model -- 2.3.3 Network Model -- 2.3.4 Network Split Probability -- 2.3.5 Average Number of Replies -- 2.3.6 Expected Number of Received Heartbeats for a Follower -- 2.3.7 Time to Transition to Candidate.
2.3.8 Time to Elect a New Leader -- 2.3.9 Simulation Results -- 2.3.10 Discussion -- 2.3.10.1 Extended Model -- 2.3.10.2 System Availability and Consensus Efficiency -- 2.4 Conclusion -- References -- Chapter 3 A Low Communication Complexity Double‐layer PBFT Consensus -- 3.1 Introduction -- 3.1.1 PBFT Applied to Blockchain -- 3.1.2 From CFT to BFT -- 3.1.2.1 State Machine Replication -- 3.1.2.2 Primary Copy -- 3.1.2.3 Quorum Voting -- 3.1.3 Byzantine Generals Problem -- 3.1.4 Byzantine Consensus Protocols -- 3.1.4.1 Two‐Phase Commit -- 3.1.4.2 View Stamp -- 3.1.4.3 PBFT Protocol -- 3.1.5 Motivations -- 3.1.6 Chapter Organizations -- 3.2 Double‐Layer PBFT‐Based Protocol -- 3.2.1 Consensus Flow -- 3.2.1.1 The Client -- 3.2.1.2 First‐Layer Protocol -- 3.2.1.3 Second‐Layer Protocol -- 3.2.2 Faulty Primary Elimination -- 3.2.2.1 Faulty Primary Detection -- 3.2.2.2 View Change -- 3.2.3 Garbage Cleaning -- 3.3 Communication Reduction -- 3.3.1 Operation Synchronization -- 3.3.2 Safety and Liveness -- 3.4 Communication Complexity of Double‐Layer PBFT -- 3.5 Security Threshold Analysis -- 3.5.1 Faulty Probability Determined -- 3.5.2 Faulty Number Determined -- 3.6 Conclusion -- References -- Chapter 4 Blockchain‐Driven Internet of Things -- 4.1 Introduction -- 4.1.1 Challenges and Issues in IoT -- 4.1.2 Advantages of Blockchain for IoT -- 4.1.3 Integration of IoT and Blockchain -- 4.2 Consensus Mechanism in Blockchain -- 4.2.1 PoW -- 4.2.2 PoS -- 4.2.3 Limitations of PoW and PoS for IoT -- 4.2.3.1 Resource Consumption -- 4.2.3.2 Transaction Fee -- 4.2.3.3 Throughput Limitation -- 4.2.3.4 Confirmation Delay -- 4.2.4 PBFT -- 4.2.5 DAG -- 4.2.5.1 Tangle -- 4.2.5.2 Hashgraph -- 4.3 Applications of Blockchain in IoT -- 4.3.1 Supply Chain -- 4.3.1.1 Introduction -- 4.3.1.2 Modified Blockchain -- 4.3.1.3 Integrated Architecture -- 4.3.1.4 Security Analysis.
4.3.2 Smart City -- 4.3.2.1 Introduction -- 4.3.2.2 Smart Contract System -- 4.3.2.3 Main Functions of the Framework -- 4.3.2.4 Discussion -- 4.4 Issues and Challenges of Blockchain in IoT -- 4.4.1 Resource Constraints -- 4.4.2 Security Vulnerability -- 4.4.3 Privacy Leakage -- 4.4.4 Incentive Mechanism -- 4.5 Conclusion -- References -- Chapter 5 Hyperledger Blockchain‐Based Distributed Marketplaces for 5G Networks -- 5.1 Introduction -- 5.2 Marketplaces in Telecommunications -- 5.2.1 Wireless Spectrum Allocation -- 5.2.2 Network Slicing -- 5.2.3 Passive optical networks (PON) Sharing -- 5.2.4 Enterprise Blockchain: Hyperledger Fabric -- 5.2.4.1 Shared Ledger -- 5.2.4.2 Organizations -- 5.2.4.3 Consensus Protocol -- 5.2.4.4 Network Peers -- 5.2.4.5 Smart Contracts (chaincodes) -- 5.2.4.6 Channels -- 5.3 Distributed Resource Sharing Market -- 5.3.1 Market Mechanism (Auction) -- 5.3.2 Preliminaries -- 5.4 Experimental Design and Results -- 5.4.1 Experimental Blockchain Deployment -- 5.4.1.1 Cloud Infrastructure -- 5.4.1.2 Container Orchestration: Docker Swarm -- 5.4.2 Blockchain Performance Evaluation -- 5.4.3 Benchmark Apparatus -- 5.4.3.1 Hyperledger Caliper -- 5.4.3.2 Data Collection: Prometheus Monitor -- 5.4.4 Experimental Results -- 5.4.4.1 Maximum Transaction Throughput -- 5.4.4.2 Block Size -- 5.4.4.3 Network Size -- 5.5 Conclusions -- References -- Chapter 6 Blockchain for Spectrum Management in 6G Networks -- 6.1 Introduction -- 6.2 Background -- 6.2.1 Rise of Micro‐operators -- 6.2.2 Case for Novel Spectrum Sharing Models -- 6.2.2.1 Blockchain for Spectrum Sharing -- 6.2.2.2 Blockchain in 6G Networks -- 6.3 Architecture of an Integrated SDN and Blockchain Model -- 6.3.1 SDN Platform Design -- 6.3.2 Blockchain Network Layer Design -- 6.3.3 Network Operation and Spectrum Management -- 6.4 Simulation Design -- 6.5 Results and Analysis.
6.5.1 Radio Access Network and Throughput -- 6.5.2 Blockchain Performance -- 6.5.3 Blockchain Scalability Performance -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Integration of MEC and Blockchain -- 7.1 Introduction -- 7.2 Typical Framework -- 7.2.1 Blockchain‐Enabled MEC -- 7.2.1.1 Background -- 7.2.1.2 Framework Description -- 7.2.2 MEC‐Based Blockchain -- 7.2.2.1 Background -- 7.2.2.2 Framework Description -- 7.3 Use Cases -- 7.3.1 Security Federated Learning via MEC‐Enabled Blockchain Network -- 7.3.1.1 Background -- 7.3.1.2 Blockchain‐Driven Federated Learning -- 7.3.1.3 Experimental Results -- 7.3.2 Blockchain‐Assisted Secure Authentication for Cross‐Domain Industrial IoT -- 7.3.2.1 Background -- 7.3.2.2 Blockchain‐Driven Cross‐Domain Authentication -- 7.3.2.3 Experimental Results -- 7.4 Conclusion -- References -- Chapter 8 Performance Analysis on Wireless Blockchain IoT System -- 8.1 Introduction -- 8.2 System Model -- 8.2.1 Blockchain‐Enabled IoT Network Model -- 8.2.2 Wireless Communication Model -- 8.3 Performance Analysis in Blockchain‐Enabled Wireless IoT Networks -- 8.3.1 Probability Density Function of SINR -- 8.3.2 TDP Transmission Successful Rate -- 8.3.3 Overall Communication Throughput -- 8.4 Optimal FN Deployment -- 8.5 Security Performance Analysis -- 8.5.1 Eclipse Attacks -- 8.5.2 Random Link Attacks -- 8.5.3 Random FN Attacks -- 8.6 Numerical Results and Discussion -- 8.6.1 Simulation Settings -- 8.6.2 Performance Evaluation without Attacks -- 8.7 Chapter Summary -- References -- Chapter 9 Utilizing Blockchain as a Citizen‐Utility for Future Smart Grids -- 9.1 Introduction -- 9.2 DET Using Citizen‐Utilities -- 9.2.1 Prosumer Community Groups -- 9.2.1.1 Microgrids -- 9.2.1.2 Virtual Power Plants (VPP) -- 9.2.1.3 Vehicular Energy Networks (VEN) -- 9.2.2 Demand Side Management -- 9.2.2.1 Energy Efficiency.
9.2.2.2 Demand Response -- 9.2.2.3 Spinning Reserves -- 9.2.3 Open Research Challenges -- 9.2.3.1 Scalability and IoT Overhead Issues -- 9.2.3.2 Privacy Leakage Issues -- 9.2.3.3 Standardization and Interoperability Issues -- 9.3 Improved Citizen‐Utilities -- 9.3.1 Toward Scalable Citizen‐Utilities -- 9.3.1.1 Challenges -- 9.3.1.2 HARB Framework‐Based Citizen‐Utility -- 9.3.2 Toward Privacy‐Preserving Citizen‐Utilities -- 9.3.2.1 Threat Model -- 9.3.2.2 PDCH System -- 9.4 Conclusions -- References -- Chapter 10 Blockchain‐enabled COVID‐19 Contact Tracing Solutions -- 10.1 Introduction -- 10.2 Preliminaries of BeepTrace -- 10.2.1 Motivation -- 10.2.1.1 Comprehensive Privacy Protection -- 10.2.1.2 Performance is Uncompromising -- 10.2.1.3 Broad Community Participation -- 10.2.1.4 Inclusiveness and Openness -- 10.2.2 Two Implementations are Based on Different Matching Protocols -- 10.3 Modes of BeepTrace -- 10.3.1 BeepTrace‐Active -- 10.3.1.1 Active Mode Workflow -- 10.3.1.2 Privacy Protection of BeepTrace‐Active -- 10.3.2 BeepTrace‐Passive -- 10.3.2.1 Two‐Chain Architecture and Workflow -- 10.3.2.2 Privacy Protection in BeepTrace‐Passive -- 10.4 Future Opportunity and Conclusions -- 10.4.1 Preliminary Approach -- 10.4.2 Future Directions -- 10.4.2.1 Network Throughput and Scalability -- 10.4.2.2 Technology for Elders and Minors -- 10.4.2.3 Battery Drainage and Storage Optimization -- 10.4.2.4 Social and Economic Aspects -- 10.4.3 Concluding Remarks -- References -- Chapter 11 Blockchain Medical Data Sharing -- 11.1 Introduction -- 11.1.1 General Overview -- 11.1.2 Defining Challenges -- 11.1.2.1 Data Security -- 11.1.2.2 Data Privacy -- 11.1.2.3 Source Identity -- 11.1.2.4 Data Utility -- 11.1.2.5 Data Interoperability -- 11.1.2.6 Trust -- 11.1.2.7 Data Provenance -- 11.1.2.8 Authenticity -- 11.1.3 Sharing Paradigms.
11.1.3.1 Institution‐to‐Institution Data Sharing.
Record Nr. UNINA-9910830137603321
Chichester, England : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui