top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Explainable and transparent AI and multi-agent systems : 4th international workshop, EXTRAAMAS 2022, virtual event, May 9-10, 2022, revised selected papers / / edited by Davide Calvaresi [and three others]
Explainable and transparent AI and multi-agent systems : 4th international workshop, EXTRAAMAS 2022, virtual event, May 9-10, 2022, revised selected papers / / edited by Davide Calvaresi [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (242 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Intelligent agents (Computer software)
ISBN 3-031-15565-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Explainable Machine Learning -- Evaluation of Importance Estimators in Deep Learning Classifiers for Computed Tomography -- 1 Introduction -- 2 Importance Estimators -- 3 Evaluation Methods -- 3.1 Model Accuracy per Input Feature Perturbation -- 3.2 Concordance Between Importance Scores and Segmentation -- 3.3 XRAI-Based Region-Wise Overlap Comparison -- 4 Results -- 4.1 Model Accuracy per Input Feature Perturbation -- 4.2 Concordance Between Importance Scores and Segmentation -- 4.3 XRAI-Based Region-Wise Overlap Comparison -- 5 Discussion -- References -- Integration of Local and Global Features Explanation with Global Rules Extraction and Generation Tools -- 1 Introduction -- 2 State of the Art -- 3 Methodology -- 4 Results and Analysis -- 4.1 S1 - ECLAIRE -- 4.2 S2 - ExpL and ECLAIRE -- 4.3 S3 - CIU and ECLAIRE -- 4.4 S4 - ExpL CIU and ECLAIRE -- 5 Discussion -- 6 Conclusions -- A Appendix Feature Description -- References -- ReCCoVER: Detecting Causal Confusion for Explainable Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 2.1 Structural Causal Models (SCM) -- 2.2 Explainable Reinforcement Learning (XRL) -- 3 ReCCoVER -- 3.1 Extracting Critical States -- 3.2 Training Feature-Parametrized Policy -- 3.3 Generating Alternative Environments -- 3.4 Detecting Causal Confusion -- 4 Evaluation Scenarios and Settings -- 5 Evaluating ReCCoVER -- 6 Results -- 6.1 Taxi Environment -- 6.2 Minigrid Traffic Environment -- 7 Discussion and Future Work -- References -- Smartphone Based Grape Leaf Disease Diagnosis and Remedial System Assisted with Explanations -- 1 Introduction -- 1.1 Motivation -- 2 Related Work -- 3 Proposed Methodology -- 4 Implementation -- 4.1 Dataset -- 4.2 Image Augmentation -- 4.3 Model Training -- 4.4 Contextual Importance and Utility- Image -- 4.5 Mobile App.
5 Experimental Evaluation -- 5.1 Experimental Setup -- 5.2 Results and Analyses -- 6 Discussion -- 7 Conclusions and Future Work -- References -- Explainable Neuro-Symbolic AI -- Recent Neural-Symbolic Approaches to ILP Based on Templates -- 1 Introduction -- 2 Background -- 2.1 First-Order Logic -- 2.2 ILP -- 3 Neural-Symbolic ILP Methods -- 3.1 ILP -- 3.2 NTPs -- 3.3 ILPCamp -- 3.4 MetaAbd -- 4 A Comparison Based on Four Characteristics -- 4.1 Language -- 4.2 Search Method -- 4.3 Recursion -- 4.4 Predicate Invention -- 5 Open Problems and Challenges -- 6 Conclusion -- References -- On the Design of PSyKI: A Platform for Symbolic Knowledge Injection into Sub-symbolic Predictors -- 1 Introduction -- 2 Knowledge Injection Background -- 2.1 Constraining Neural Networks -- 2.2 Structuring Neural Networks -- 2.3 Workflow -- 3 A Platform for Symbolic Knowledge Injection -- 3.1 Overall Architecture -- 3.2 Technology -- 4 Case Study -- 4.1 Code Example -- 4.2 Results -- 5 Conclusion -- References -- Explainable Agents -- The Mirror Agent Model: A Bayesian Architecture for Interpretable Agent Behavior -- 1 Introduction -- 2 Background -- 2.1 The Mirror Agent Model -- 2.2 Previous Work -- 2.3 Informative Intention Verbalization -- 2.4 Legible Behavior -- 3 Generating Explanations -- 3.1 Background -- 3.2 Explanation Model -- 3.3 Preliminary Results -- 4 Conclusions -- References -- Semantic Web-Based Interoperability for Intelligent Agents with PSyKE -- 1 Introduction -- 2 State of the Art -- 2.1 Symbolic Knowledge Extraction -- 2.2 PSyKE -- 2.3 Semantic Web -- 2.4 Owlready -- 3 Interoperability via PSyKE -- 3.1 Output Rules in SWRL Format -- 3.2 Propositionalisation -- 3.3 Relationalisation -- 3.4 Semantic Web for SKE: Pros and Cons -- 4 An Example: The Iris Data Set -- 5 Open Issues -- 6 Conclusions -- References.
Case-Based Reasoning via Comparing the Strength Order of Features -- 1 Introduction -- 2 Strength of Atomic Features -- 3 Discussion and Future Work -- 4 Conclusion -- References -- XAI Measures and Metrics -- Explainability Metrics and Properties for Counterfactual Explanation Methods -- 1 Introduction -- 2 Related Work -- 3 Methodological Framework -- 3.1 Counterfactual Methods -- 3.2 Deriving XAI Metrics for Counterfactual Explanation Methods -- 4 System Design and Implementation -- 4.1 Pipeline Structure and Workflow -- 4.2 Dataset -- 4.3 Experiments -- 5 Results and Analysis -- 5.1 Results -- 6 Conclusion and Future Work -- References -- The Use of Partial Order Relations and Measure Theory in Developing Objective Measures of Explainability -- 1 Introduction -- 1.1 Background on Explainability -- 1.2 Purpose of the Paper -- 2 Related Work -- 2.1 The Need for an Objective Measure of Explainability -- 2.2 Explanation Selection -- 3 The Use of Partial Order Relations in the Domain of Explainability -- 3.1 Some Background on Partial Order Relations -- 3.2 Explainability as a Partial Order Relation -- 4 The Use of Measure Theory in the Domain of Explainability -- 4.1 Some Background on Measure Theory -- 4.2 Assigning a Measure to an Explanation -- 5 Unifying Partial Order Relations and Measure Theory Through the Law of Diminishing Returns -- 5.1 Background on the Law of Diminishing Returns -- 5.2 Application of the Law of Diminishing Returns in the Context of Explainability -- 6 Conclusion -- References -- AI and Law -- An Evaluation of Methodologies for Legal Formalization -- 1 Introduction and Motivation -- 2 Literature Overview of Recent Legal Formalization Approaches -- 3 Overview of Evaluation Methods of Legal Formalization -- 4 What Constitutes a ``Good'' Formalization? -- 4.1 Correctness -- 4.2 Transparency -- 4.3 Comprehensibility.
4.4 Multiple Interpretations Support -- 5 The Legal Experts Evaluation Methodology Proposal -- 6 Conclusions -- References -- Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation -- 1 Introduction -- 2 Background and State of the Art -- 2.1 Explainable AI -- 2.2 Explainable AI Through the Lens of Legal Reasoning -- 2.3 Persuasion and Manipulation: The Impact on Self-authorship -- 3 Legal Entanglements Beyond XAI -- 3.1 Can Data-Driven AI Systems be Actually Transparent for Non-expert Users? -- 3.2 Can the Mere Fact of Giving an Explanation Make the System Safer? -- 3.3 Can the Explanation Make the User ``Really'' Aware of the Dynamic of the Interaction? -- 3.4 Desiderata for a Not Manipulative XAI -- 4 Conclusions and Future Works -- References -- Requirements for Tax XAI Under Constitutional Principles and Human Rights -- 1 Introduction -- 2 Requirements for Tax XAI under Constitutional Principles -- 3 Requirements for Tax XAI under the European Convention on Human Rights (ECHR) -- 3.1 Right to a Fair Trial (Article 6 ECHR) -- 3.2 Right to Respect for Private and Family Life (Article 8 ECHR) -- 3.3 The Prohibition of Discrimination (Article 14) in Conjunction with Other Provisions of the ECHR and its Protocols -- 4 Preliminary Proposals to Meet the Explanation Requirements under the Constitutional Principles and the ECHR -- 5 Concluding Remarks -- References -- Author Index.
Record Nr. UNISA-996490355103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Explainable and transparent AI and multi-agent systems : 4th international workshop, EXTRAAMAS 2022, virtual event, May 9-10, 2022, revised selected papers / / edited by Davide Calvaresi [and three others]
Explainable and transparent AI and multi-agent systems : 4th international workshop, EXTRAAMAS 2022, virtual event, May 9-10, 2022, revised selected papers / / edited by Davide Calvaresi [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (242 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Intelligent agents (Computer software)
ISBN 3-031-15565-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Explainable Machine Learning -- Evaluation of Importance Estimators in Deep Learning Classifiers for Computed Tomography -- 1 Introduction -- 2 Importance Estimators -- 3 Evaluation Methods -- 3.1 Model Accuracy per Input Feature Perturbation -- 3.2 Concordance Between Importance Scores and Segmentation -- 3.3 XRAI-Based Region-Wise Overlap Comparison -- 4 Results -- 4.1 Model Accuracy per Input Feature Perturbation -- 4.2 Concordance Between Importance Scores and Segmentation -- 4.3 XRAI-Based Region-Wise Overlap Comparison -- 5 Discussion -- References -- Integration of Local and Global Features Explanation with Global Rules Extraction and Generation Tools -- 1 Introduction -- 2 State of the Art -- 3 Methodology -- 4 Results and Analysis -- 4.1 S1 - ECLAIRE -- 4.2 S2 - ExpL and ECLAIRE -- 4.3 S3 - CIU and ECLAIRE -- 4.4 S4 - ExpL CIU and ECLAIRE -- 5 Discussion -- 6 Conclusions -- A Appendix Feature Description -- References -- ReCCoVER: Detecting Causal Confusion for Explainable Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 2.1 Structural Causal Models (SCM) -- 2.2 Explainable Reinforcement Learning (XRL) -- 3 ReCCoVER -- 3.1 Extracting Critical States -- 3.2 Training Feature-Parametrized Policy -- 3.3 Generating Alternative Environments -- 3.4 Detecting Causal Confusion -- 4 Evaluation Scenarios and Settings -- 5 Evaluating ReCCoVER -- 6 Results -- 6.1 Taxi Environment -- 6.2 Minigrid Traffic Environment -- 7 Discussion and Future Work -- References -- Smartphone Based Grape Leaf Disease Diagnosis and Remedial System Assisted with Explanations -- 1 Introduction -- 1.1 Motivation -- 2 Related Work -- 3 Proposed Methodology -- 4 Implementation -- 4.1 Dataset -- 4.2 Image Augmentation -- 4.3 Model Training -- 4.4 Contextual Importance and Utility- Image -- 4.5 Mobile App.
5 Experimental Evaluation -- 5.1 Experimental Setup -- 5.2 Results and Analyses -- 6 Discussion -- 7 Conclusions and Future Work -- References -- Explainable Neuro-Symbolic AI -- Recent Neural-Symbolic Approaches to ILP Based on Templates -- 1 Introduction -- 2 Background -- 2.1 First-Order Logic -- 2.2 ILP -- 3 Neural-Symbolic ILP Methods -- 3.1 ILP -- 3.2 NTPs -- 3.3 ILPCamp -- 3.4 MetaAbd -- 4 A Comparison Based on Four Characteristics -- 4.1 Language -- 4.2 Search Method -- 4.3 Recursion -- 4.4 Predicate Invention -- 5 Open Problems and Challenges -- 6 Conclusion -- References -- On the Design of PSyKI: A Platform for Symbolic Knowledge Injection into Sub-symbolic Predictors -- 1 Introduction -- 2 Knowledge Injection Background -- 2.1 Constraining Neural Networks -- 2.2 Structuring Neural Networks -- 2.3 Workflow -- 3 A Platform for Symbolic Knowledge Injection -- 3.1 Overall Architecture -- 3.2 Technology -- 4 Case Study -- 4.1 Code Example -- 4.2 Results -- 5 Conclusion -- References -- Explainable Agents -- The Mirror Agent Model: A Bayesian Architecture for Interpretable Agent Behavior -- 1 Introduction -- 2 Background -- 2.1 The Mirror Agent Model -- 2.2 Previous Work -- 2.3 Informative Intention Verbalization -- 2.4 Legible Behavior -- 3 Generating Explanations -- 3.1 Background -- 3.2 Explanation Model -- 3.3 Preliminary Results -- 4 Conclusions -- References -- Semantic Web-Based Interoperability for Intelligent Agents with PSyKE -- 1 Introduction -- 2 State of the Art -- 2.1 Symbolic Knowledge Extraction -- 2.2 PSyKE -- 2.3 Semantic Web -- 2.4 Owlready -- 3 Interoperability via PSyKE -- 3.1 Output Rules in SWRL Format -- 3.2 Propositionalisation -- 3.3 Relationalisation -- 3.4 Semantic Web for SKE: Pros and Cons -- 4 An Example: The Iris Data Set -- 5 Open Issues -- 6 Conclusions -- References.
Case-Based Reasoning via Comparing the Strength Order of Features -- 1 Introduction -- 2 Strength of Atomic Features -- 3 Discussion and Future Work -- 4 Conclusion -- References -- XAI Measures and Metrics -- Explainability Metrics and Properties for Counterfactual Explanation Methods -- 1 Introduction -- 2 Related Work -- 3 Methodological Framework -- 3.1 Counterfactual Methods -- 3.2 Deriving XAI Metrics for Counterfactual Explanation Methods -- 4 System Design and Implementation -- 4.1 Pipeline Structure and Workflow -- 4.2 Dataset -- 4.3 Experiments -- 5 Results and Analysis -- 5.1 Results -- 6 Conclusion and Future Work -- References -- The Use of Partial Order Relations and Measure Theory in Developing Objective Measures of Explainability -- 1 Introduction -- 1.1 Background on Explainability -- 1.2 Purpose of the Paper -- 2 Related Work -- 2.1 The Need for an Objective Measure of Explainability -- 2.2 Explanation Selection -- 3 The Use of Partial Order Relations in the Domain of Explainability -- 3.1 Some Background on Partial Order Relations -- 3.2 Explainability as a Partial Order Relation -- 4 The Use of Measure Theory in the Domain of Explainability -- 4.1 Some Background on Measure Theory -- 4.2 Assigning a Measure to an Explanation -- 5 Unifying Partial Order Relations and Measure Theory Through the Law of Diminishing Returns -- 5.1 Background on the Law of Diminishing Returns -- 5.2 Application of the Law of Diminishing Returns in the Context of Explainability -- 6 Conclusion -- References -- AI and Law -- An Evaluation of Methodologies for Legal Formalization -- 1 Introduction and Motivation -- 2 Literature Overview of Recent Legal Formalization Approaches -- 3 Overview of Evaluation Methods of Legal Formalization -- 4 What Constitutes a ``Good'' Formalization? -- 4.1 Correctness -- 4.2 Transparency -- 4.3 Comprehensibility.
4.4 Multiple Interpretations Support -- 5 The Legal Experts Evaluation Methodology Proposal -- 6 Conclusions -- References -- Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation -- 1 Introduction -- 2 Background and State of the Art -- 2.1 Explainable AI -- 2.2 Explainable AI Through the Lens of Legal Reasoning -- 2.3 Persuasion and Manipulation: The Impact on Self-authorship -- 3 Legal Entanglements Beyond XAI -- 3.1 Can Data-Driven AI Systems be Actually Transparent for Non-expert Users? -- 3.2 Can the Mere Fact of Giving an Explanation Make the System Safer? -- 3.3 Can the Explanation Make the User ``Really'' Aware of the Dynamic of the Interaction? -- 3.4 Desiderata for a Not Manipulative XAI -- 4 Conclusions and Future Works -- References -- Requirements for Tax XAI Under Constitutional Principles and Human Rights -- 1 Introduction -- 2 Requirements for Tax XAI under Constitutional Principles -- 3 Requirements for Tax XAI under the European Convention on Human Rights (ECHR) -- 3.1 Right to a Fair Trial (Article 6 ECHR) -- 3.2 Right to Respect for Private and Family Life (Article 8 ECHR) -- 3.3 The Prohibition of Discrimination (Article 14) in Conjunction with Other Provisions of the ECHR and its Protocols -- 4 Preliminary Proposals to Meet the Explanation Requirements under the Constitutional Principles and the ECHR -- 5 Concluding Remarks -- References -- Author Index.
Record Nr. UNINA-9910595034903321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable and transparent AI and Multi-Agent Systems : third international workshop, EXTRAAMAS 2021, virtual event, May 3-7, 2021, revised selected papers / / edited by Davide Calvaresi [and three others]
Explainable and transparent AI and Multi-Agent Systems : third international workshop, EXTRAAMAS 2021, virtual event, May 3-7, 2021, revised selected papers / / edited by Davide Calvaresi [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (351 pages)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Logic, Symbolic and mathematical
Machine learning
ISBN 3-030-82017-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495247103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable and transparent AI and Multi-Agent Systems : third international workshop, EXTRAAMAS 2021, virtual event, May 3-7, 2021, revised selected papers / / edited by Davide Calvaresi [and three others]
Explainable and transparent AI and Multi-Agent Systems : third international workshop, EXTRAAMAS 2021, virtual event, May 3-7, 2021, revised selected papers / / edited by Davide Calvaresi [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (351 pages)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Logic, Symbolic and mathematical
Machine learning
ISBN 3-030-82017-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464433903316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Explainable, Transparent Autonomous Agents and Multi-Agent Systems [[electronic resource] ] : Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, May 9–13, 2020, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Winikoff, Kary Främling
Explainable, Transparent Autonomous Agents and Multi-Agent Systems [[electronic resource] ] : Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, May 9–13, 2020, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Winikoff, Kary Främling
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 155 p. 63 illus., 27 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computers
Computer organization
Application software
Multiagent Systems
Artificial Intelligence
Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-51924-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Explainable Agents -- Agent-Based Explanations in AI: Towards an Abstract Framework -- Agent EXPRI: Licence to Explain -- In-time Explainability in Multi-Agent Systems: Challenges, Opportunities, and Roadmap -- Cross Disciplinary XAI -- Decision Theory Meets Explainable AI -- Towards the Role of Theory of Mind in Explanation -- A Situation Awareness-Based Framework for Design and Evaluation of Explainable AI -- Explainable Machine Learning -- Towards Demystifying Subliminal Persuasiveness - Using XAI-Techniques to Highlight Persuasive Markers of Public Speeches -- Explainable Agents for Less Bias in Human-Agent Decision Making -- Demos -- Explainable Agents as Static Web Pages: A UAV Simulation Example.
Record Nr. UNISA-996418307703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Explainable, Transparent Autonomous Agents and Multi-Agent Systems : Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, May 9–13, 2020, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Winikoff, Kary Främling
Explainable, Transparent Autonomous Agents and Multi-Agent Systems : Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, May 9–13, 2020, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Winikoff, Kary Främling
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (X, 155 p. 63 illus., 27 illus. in color.)
Disciplina 006.3
006.30285436
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Computers
Computer organization
Application software
Multiagent Systems
Artificial Intelligence
Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-51924-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Explainable Agents -- Agent-Based Explanations in AI: Towards an Abstract Framework -- Agent EXPRI: Licence to Explain -- In-time Explainability in Multi-Agent Systems: Challenges, Opportunities, and Roadmap -- Cross Disciplinary XAI -- Decision Theory Meets Explainable AI -- Towards the Role of Theory of Mind in Explanation -- A Situation Awareness-Based Framework for Design and Evaluation of Explainable AI -- Explainable Machine Learning -- Towards Demystifying Subliminal Persuasiveness - Using XAI-Techniques to Highlight Persuasive Markers of Public Speeches -- Explainable Agents for Less Bias in Human-Agent Decision Making -- Demos -- Explainable Agents as Static Web Pages: A UAV Simulation Example.
Record Nr. UNINA-9910413444203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable, Transparent Autonomous Agents and Multi-Agent Systems [[electronic resource] ] : First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13–14, 2019, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Schumacher, Kary Främling
Explainable, Transparent Autonomous Agents and Multi-Agent Systems [[electronic resource] ] : First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13–14, 2019, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Schumacher, Kary Främling
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 221 p. 66 illus., 38 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Robotics
Machine learning
User interfaces (Computer systems)
Special purpose computers
Multiagent Systems
Machine Learning
User Interfaces and Human Computer Interaction
Special Purpose and Application-Based Systems
ISBN 3-030-30391-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Explanation and Transparency -- Towards a transparent deep ensemble method based on multiagent Argumentation -- Effects of Agents' Transparency on Teamwork -- Explainable Robots -- Explainable Multi-Agent Systems through Blockchain Technology Authors -- Explaining Sympathetic Actions of Rational Agents -- Conversational Interfaces for Explainable AI: A Human-Centered Approach -- Opening the Black Box -- Explanations of Black-Box Model Predictions by Contextual Importance and Utility -- Explainable Artificial Intelligence based Heat Recycler Fault Detection in Air Handling Unit -- Explainable Agent Simulations -- Explaining Aggregate Behaviour in Cognitive Agent Simulations using Explanation -- BEN : An Agent Architecture for Explainable and Expressive Behavior in Social Simulation -- Planning and Argumentation -- Temporal Multiagent Plan Execution: Explaining what Happened -- Explainable Argumentation for Wellness Consultation -- Explainable AI and Cognitive Science -- How Cognitive Science Impacts AI and What We Can Learn From It.
Record Nr. UNISA-996466316503316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Explainable, Transparent Autonomous Agents and Multi-Agent Systems : First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13–14, 2019, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Schumacher, Kary Främling
Explainable, Transparent Autonomous Agents and Multi-Agent Systems : First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13–14, 2019, Revised Selected Papers / / edited by Davide Calvaresi, Amro Najjar, Michael Schumacher, Kary Främling
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 221 p. 66 illus., 38 illus. in color.)
Disciplina 006.3
006.30285436
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Robotics
Machine learning
User interfaces (Computer systems)
Special purpose computers
Multiagent Systems
Machine Learning
User Interfaces and Human Computer Interaction
Special Purpose and Application-Based Systems
ISBN 3-030-30391-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Explanation and Transparency -- Towards a transparent deep ensemble method based on multiagent Argumentation -- Effects of Agents' Transparency on Teamwork -- Explainable Robots -- Explainable Multi-Agent Systems through Blockchain Technology Authors -- Explaining Sympathetic Actions of Rational Agents -- Conversational Interfaces for Explainable AI: A Human-Centered Approach -- Opening the Black Box -- Explanations of Black-Box Model Predictions by Contextual Importance and Utility -- Explainable Artificial Intelligence based Heat Recycler Fault Detection in Air Handling Unit -- Explainable Agent Simulations -- Explaining Aggregate Behaviour in Cognitive Agent Simulations using Explanation -- BEN : An Agent Architecture for Explainable and Expressive Behavior in Social Simulation -- Planning and Argumentation -- Temporal Multiagent Plan Execution: Explaining what Happened -- Explainable Argumentation for Wellness Consultation -- Explainable AI and Cognitive Science -- How Cognitive Science Impacts AI and What We Can Learn From It.
Record Nr. UNINA-9910349282003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection : International Workshops of PAAMS 2019, Ávila, Spain, June 26–28, 2019, Proceedings / / edited by Fernando De La Prieta, Alfonso González-Briones, Pawel Pawleski, Davide Calvaresi, Elena Del Val, Fernando Lopes, Vicente Julian, Eneko Osaba, Ramón Sánchez-Iborra
Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection : International Workshops of PAAMS 2019, Ávila, Spain, June 26–28, 2019, Proceedings / / edited by Fernando De La Prieta, Alfonso González-Briones, Pawel Pawleski, Davide Calvaresi, Elena Del Val, Fernando Lopes, Vicente Julian, Eneko Osaba, Ramón Sánchez-Iborra
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 350 p. 113 illus., 91 illus. in color.)
Disciplina 006.3
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Application software
Information storage and retrieval
Computer organization
E-commerce
Computer security
Artificial Intelligence
Information Systems Applications (incl. Internet)
Information Storage and Retrieval
Computer Systems Organization and Communication Networks
e-Commerce/e-business
Systems and Data Security
ISBN 3-030-24299-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Workshop on Agents-based Solutions for Manufacturing and Supply Chain (AMSC) -- 2nd International Workshop on Blockchain Technology for Multi-Agent Systems (BTC4MAS) -- Workshop on MAS for Complex Networks and Social Computation (CNSC) -- Workshop on Multi-agent based Applications for Energy Markets, Smart Grids and Sustainable Energy Systems (MASGES) -- Workshop on Smart Cities and Intelligent Agents (SCIA) -- Workshop on Swarm Intelligence and Swarm Robotics (SISR) -- Special Session on Software Agents and Virtualizacion for Internet of Things (SAVIoTS) -- DOCTORAL CONSORTIUM.
Record Nr. UNINA-9910337842303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui