top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Types for Proofs and Programs [[electronic resource] ] : International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000. Selected Papers / / edited by Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack
Types for Proofs and Programs [[electronic resource] ] : International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000. Selected Papers / / edited by Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Descrizione fisica 1 online resource (VIII, 248 p.)
Disciplina 006.3/33
Collana Lecture Notes in Computer Science
Soggetto topico Computer logic
Architecture, Computer
Mathematical logic
Programming languages (Electronic computers)
Artificial intelligence
Logics and Meanings of Programs
Computer System Implementation
Mathematical Logic and Foundations
Mathematical Logic and Formal Languages
Programming Languages, Compilers, Interpreters
Artificial Intelligence
ISBN 3-540-45842-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Collection Principles in Dependent Type Theory -- Executing Higher Order Logic -- A Tour with Constructive Real Numbers -- An Implementation of Type:Type -- On the Logical Content of Computational Type Theory: A Solution to Curry’s Problem -- Constructive Reals in Coq: Axioms and Categoricity -- A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals -- A Kripke-Style Model for the Admissibility of Structural Rules -- Towards Limit Computable Mathematics -- Formalizing the Halting Problem in a Constructive Type Theory -- On the Proofs of Some Formally Unprovable Propositions and Prototype Proofs in Type Theory -- Changing Data Structures in Type Theory: A Study of Natural Numbers -- Elimination with a Motive -- Generalization in Type Theory Based Proof Assistants -- An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument for Higman’s Lemma.
Record Nr. UNISA-996465407003316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Types for Proofs and Programs : International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000. Selected Papers / / edited by Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack
Types for Proofs and Programs : International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000. Selected Papers / / edited by Paul Callaghan, Zhaohui Luo, James McKinna, Robert Pollack
Edizione [1st ed. 2002.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Descrizione fisica 1 online resource (VIII, 248 p.)
Disciplina 006.3/33
Collana Lecture Notes in Computer Science
Soggetto topico Computer logic
Computer architecture
Logic, Symbolic and mathematical
Programming languages (Electronic computers)
Artificial intelligence
Logics and Meanings of Programs
Computer System Implementation
Mathematical Logic and Foundations
Mathematical Logic and Formal Languages
Programming Languages, Compilers, Interpreters
Artificial Intelligence
ISBN 3-540-45842-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Collection Principles in Dependent Type Theory -- Executing Higher Order Logic -- A Tour with Constructive Real Numbers -- An Implementation of Type:Type -- On the Logical Content of Computational Type Theory: A Solution to Curry’s Problem -- Constructive Reals in Coq: Axioms and Categoricity -- A Constructive Proof of the Fundamental Theorem of Algebra without Using the Rationals -- A Kripke-Style Model for the Admissibility of Structural Rules -- Towards Limit Computable Mathematics -- Formalizing the Halting Problem in a Constructive Type Theory -- On the Proofs of Some Formally Unprovable Propositions and Prototype Proofs in Type Theory -- Changing Data Structures in Type Theory: A Study of Natural Numbers -- Elimination with a Motive -- Generalization in Type Theory Based Proof Assistants -- An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument for Higman’s Lemma.
Record Nr. UNINA-9910143915203321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui