Ground station design and analysis for LEO satellites : analytical, experimental and simulation approach / / Shkelzen Cakaj |
Autore | Cakaj Shkelzen |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
Descrizione fisica | 1 online resource (243 pages) |
Disciplina | 629.46 |
Soggetto topico |
Earth stations (Satellite telecommunication) - Design and construction
Artificial satellites in telecommunication Antennas (Electronics) |
ISBN |
1-119-89928-1
1-119-89926-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 LEO Satellite Ground Station Design Concepts -- 1.1 An Overview of LEO Satellites -- 1.2 Satellite System Architecture -- 1.3 The Satellite Ground Station -- 1.4 Ground Station Subsystems -- 1.4.1 Antennas -- 1.4.2 Low Noise Amplifier -- 1.4.3 Converters -- 1.4.4 Safety System -- 1.5 Downlink Budget -- 1.5.1 Error-Performance -- 1.5.2 Received Signal Power -- 1.5.3 Link Budget Analyses -- 1.6 Figure of Merit and System Noise Temperature -- 1.7 Satellite and Ground Station Geometry -- 1.8 LEO MOST Satellite and Ground Stations -- References -- Chapter 2 Rain Attenuation -- 2.1 Rain Attenuation Concepts -- 2.2 Rain Attenuation for LEO Satellite Ground Station -- 2.3 Rain Attenuation Modeling for LEO Satellite Ground Station -- References -- Chapter 3 Downlink Performance -- 3.1 Downlink Performance Definition -- 3.2 Composite Noise Temperature at LEO Satellite Ground Station -- 3.3 Antenna Noise Temperature at LEO Satellite Ground Station -- 3.4 Downlink Performance-Figure of Merit -- 3.5 Downlink Performance: Signal-to-Noise Ratio (S/N) -- 3.6 Downlink and Uplink Antenna Separation -- 3.7 Desensibilization by Uplink Signal at LEO Satellite Ground Station -- 3.8 Downlink and Uplink Frequency Isolation -- 3.9 Sun Noise Measurement at LEO Satellite Ground Station -- References -- Chapter 4 Horizon Plane and Communication Duration -- 4.1 LEO Satellite Tracking Principles -- 4.2 Ideal Horizon Plane and Communication Duration with LEO Satellites -- 4.3 The Range and Horizon Plane Simulation for Ground Stations of LEO Satellites -- 4.4 Practical Horizon Plane for LEO Ground Stations -- 4.5 Real Communication Duration and Designed Horizon Plane Determination -- 4.6 Ideal and Designed Horizon Plane Relation in Space.
4.7 Savings on Transmit Power through Designed Horizon Plane at LEO Satellite Ground Stations -- 4.8 Elevation Impact on Signal-to-Noise Density Ratio for LEO Satellite Ground Stations -- References -- Chapter 5 LEO Coverage -- 5.1 LEO Coverage Concept -- 5.2 LEO Coverage Geometry -- 5.3 The Coverage of LEO Satellites at Low Elevation -- 5.4 Coverage Belt -- 5.5 LEO Global Coverage -- 5.6 Constellation's Coverage-Starlink Case -- 5.7 Handover-Takeover Process: Geometrical Interpretation and Confirmation -- References -- Chapter 6 LEOs Sun Synchronization -- 6.1 Orbital Sun Synchronization Concept -- 6.2 Orbital Nodal Regression -- 6.3 LEO Sun Synchronization and Inclination Window -- 6.4 Perigee Deviation under Inclination Window for Sun-Synchronized LEOs -- References -- Chapter 7 Launching Process -- 7.1 Introduction to the Launching Process -- 7.2 Injection Velocity and Apogee Simulation from Low Earth Orbits -- 7.3 Hohmann Coplanar Transfer from Low Earth Orbits -- 7.4 The GEO Altitude Attainment and Inclination Alignment -- 7.4.1 Circularization and the Altitude Attainment -- 7.4.2 Inclination Alignment -- References -- Chapter 8 LEO Satellites for Search and Rescue Services -- 8.1 Introduction to LEO Satellites for Search and Rescue Services -- 8.2 SARSAT System -- 8.2.1 SARSAT Space Segment -- 8.2.2 SARSAT Ground Segment -- 8.2.3 Beacons -- 8.3 Doppler Shift -- 8.4 Local User Terminal (LUT) Simulation for LEO Satellites -- 8.5 Missed Passes for SARSAT System -- 8.6 LEOSAR Versus MEOSAR -- References -- Chapter 9 Interference Aspects -- 9.1 General Interference Aspects -- 9.2 Intermodulation Products -- 9.3 Intermodulation by Uplink Signal at LEO Satellite Ground Stations -- 9.4 Modeling of Interference Caused by Uplink Signal for LEO Satellite Ground Stations -- 9.5 Downlink Adjacent Interference for LEO Satellites. 9.6 Adjacent Satellites Interference (Identification/Avoiding) -- 9.6.1 Adjacent Interference Identification and Duration Interval -- 9.7 Modulation Index Application for Downlink Interference Identification -- 9.7.1 Simulation Approach of Interference Events and Timelines -- 9.8 Uplink Interference Identification for LEO Search and Rescue Satellites -- References -- Chapter 10 Two More Challenges -- 10.1 Introduction to the Two Challenges -- 10.2 Downlink Free Space Loss Compensation -- 10.3 Horizon Plane Width: New Parameter for LEO Satellite Ground Station Geometry -- References -- Chapter 11 Closing Remarks -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830745103321 |
Cakaj Shkelzen | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Ground Station Design and Analysis for LEO Satellites : Analytical, Experimental and Simulation Approach |
Autore | Cakaj Shkelzen |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (243 pages) |
ISBN |
1-119-89928-1
1-119-89926-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 LEO Satellite Ground Station Design Concepts -- 1.1 An Overview of LEO Satellites -- 1.2 Satellite System Architecture -- 1.3 The Satellite Ground Station -- 1.4 Ground Station Subsystems -- 1.4.1 Antennas -- 1.4.2 Low Noise Amplifier -- 1.4.3 Converters -- 1.4.4 Safety System -- 1.5 Downlink Budget -- 1.5.1 Error-Performance -- 1.5.2 Received Signal Power -- 1.5.3 Link Budget Analyses -- 1.6 Figure of Merit and System Noise Temperature -- 1.7 Satellite and Ground Station Geometry -- 1.8 LEO MOST Satellite and Ground Stations -- References -- Chapter 2 Rain Attenuation -- 2.1 Rain Attenuation Concepts -- 2.2 Rain Attenuation for LEO Satellite Ground Station -- 2.3 Rain Attenuation Modeling for LEO Satellite Ground Station -- References -- Chapter 3 Downlink Performance -- 3.1 Downlink Performance Definition -- 3.2 Composite Noise Temperature at LEO Satellite Ground Station -- 3.3 Antenna Noise Temperature at LEO Satellite Ground Station -- 3.4 Downlink Performance-Figure of Merit -- 3.5 Downlink Performance: Signal-to-Noise Ratio (S/N) -- 3.6 Downlink and Uplink Antenna Separation -- 3.7 Desensibilization by Uplink Signal at LEO Satellite Ground Station -- 3.8 Downlink and Uplink Frequency Isolation -- 3.9 Sun Noise Measurement at LEO Satellite Ground Station -- References -- Chapter 4 Horizon Plane and Communication Duration -- 4.1 LEO Satellite Tracking Principles -- 4.2 Ideal Horizon Plane and Communication Duration with LEO Satellites -- 4.3 The Range and Horizon Plane Simulation for Ground Stations of LEO Satellites -- 4.4 Practical Horizon Plane for LEO Ground Stations -- 4.5 Real Communication Duration and Designed Horizon Plane Determination -- 4.6 Ideal and Designed Horizon Plane Relation in Space.
4.7 Savings on Transmit Power through Designed Horizon Plane at LEO Satellite Ground Stations -- 4.8 Elevation Impact on Signal-to-Noise Density Ratio for LEO Satellite Ground Stations -- References -- Chapter 5 LEO Coverage -- 5.1 LEO Coverage Concept -- 5.2 LEO Coverage Geometry -- 5.3 The Coverage of LEO Satellites at Low Elevation -- 5.4 Coverage Belt -- 5.5 LEO Global Coverage -- 5.6 Constellation's Coverage-Starlink Case -- 5.7 Handover-Takeover Process: Geometrical Interpretation and Confirmation -- References -- Chapter 6 LEOs Sun Synchronization -- 6.1 Orbital Sun Synchronization Concept -- 6.2 Orbital Nodal Regression -- 6.3 LEO Sun Synchronization and Inclination Window -- 6.4 Perigee Deviation under Inclination Window for Sun-Synchronized LEOs -- References -- Chapter 7 Launching Process -- 7.1 Introduction to the Launching Process -- 7.2 Injection Velocity and Apogee Simulation from Low Earth Orbits -- 7.3 Hohmann Coplanar Transfer from Low Earth Orbits -- 7.4 The GEO Altitude Attainment and Inclination Alignment -- 7.4.1 Circularization and the Altitude Attainment -- 7.4.2 Inclination Alignment -- References -- Chapter 8 LEO Satellites for Search and Rescue Services -- 8.1 Introduction to LEO Satellites for Search and Rescue Services -- 8.2 SARSAT System -- 8.2.1 SARSAT Space Segment -- 8.2.2 SARSAT Ground Segment -- 8.2.3 Beacons -- 8.3 Doppler Shift -- 8.4 Local User Terminal (LUT) Simulation for LEO Satellites -- 8.5 Missed Passes for SARSAT System -- 8.6 LEOSAR Versus MEOSAR -- References -- Chapter 9 Interference Aspects -- 9.1 General Interference Aspects -- 9.2 Intermodulation Products -- 9.3 Intermodulation by Uplink Signal at LEO Satellite Ground Stations -- 9.4 Modeling of Interference Caused by Uplink Signal for LEO Satellite Ground Stations -- 9.5 Downlink Adjacent Interference for LEO Satellites. 9.6 Adjacent Satellites Interference (Identification/Avoiding) -- 9.6.1 Adjacent Interference Identification and Duration Interval -- 9.7 Modulation Index Application for Downlink Interference Identification -- 9.7.1 Simulation Approach of Interference Events and Timelines -- 9.8 Uplink Interference Identification for LEO Search and Rescue Satellites -- References -- Chapter 10 Two More Challenges -- 10.1 Introduction to the Two Challenges -- 10.2 Downlink Free Space Loss Compensation -- 10.3 Horizon Plane Width: New Parameter for LEO Satellite Ground Station Geometry -- References -- Chapter 11 Closing Remarks -- References -- Index -- EULA. |
Record Nr. | UNINA-9910623989103321 |
Cakaj Shkelzen | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|