Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.) |
Disciplina | 616.730754 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Machine learning Computers Education—Data processing Application software Image Processing and Computer Vision Machine Learning Information Systems and Communication Service Computers and Education Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-030-39752-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature. |
Record Nr. | UNISA-996418205603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Computational Methods and Clinical Applications for Spine Imaging : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.) |
Disciplina | 616.730754 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Machine learning Computers Education—Data processing Application software Image Processing and Computer Vision Machine Learning Information Systems and Communication Service Computers and Education Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-030-39752-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature. |
Record Nr. | UNINA-9910373927703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (X, 181 p. 103 illus., 77 illus. in color.) |
Disciplina | 616.730754 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Computer communication systems Artificial intelligence Computer hardware Image Processing and Computer Vision Health Informatics Computer Communication Networks Artificial Intelligence Computer Hardware |
ISBN | 3-030-13736-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach. |
Record Nr. | UNISA-996466445103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Computational Methods and Clinical Applications for Spine Imaging : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (X, 181 p. 103 illus., 77 illus. in color.) |
Disciplina | 616.730754 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Computer communication systems Artificial intelligence Computer hardware Image Processing and Computer Vision Health Informatics Computer Communication Networks Artificial Intelligence Computer Hardware |
ISBN | 3-030-13736-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach. |
Record Nr. | UNINA-9910337578003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|