top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Computers
Education—Data processing
Application software
Image Processing and Computer Vision
Machine Learning
Information Systems and Communication Service
Computers and Education
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-39752-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature.
Record Nr. UNISA-996418205603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging : 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Yunliang Cai, Liansheng Wang, Michel Audette, Guoyan Zheng, Shuo Li
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 120 p. 63 illus., 50 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Machine learning
Computers
Education—Data processing
Application software
Image Processing and Computer Vision
Machine Learning
Information Systems and Communication Service
Computers and Education
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-39752-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Detection of vertebral fractures in CT using 3D Convolutional Neural Networks -- Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline -- Conditioned Variational Auto-Encoder for Detecting Osteoporotic Vertebral Fractures -- Vertebral Labelling in Radiographs: Learning a Coordinate Corrector to Enforce Spinal Shape -- Semi-supervised semantic segmentation of multiple lumbosacral structures on CT -- AASCE Challenge -- Accurate Automated Keypoint Detections for Spinal Curvature Estimation -- Seg4Reg Networks for Automated Spinal Curvature Estimation -- Automatic Spine Curvature Estimation by a Top-down Approach -- Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression -- Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural Networks -- Automated Spinal Curvature Assessment from X-Ray Images using Landmarks Estimation Network via Rotation Proposals -- A coarse-to-fine deep heatmap regression method for Adolescent Idiopathic Scoliosis Assessment -- Spinal Curve Guide Network(SCG-Net) for Accurate Automated Spinal Curvature Estimation -- A Multi-Task Learning Method for Direct Estimation of Spinal Curvature.
Record Nr. UNINA-9910373927703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging [[electronic resource] ] : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 181 p. 103 illus., 77 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Computer communication systems
Artificial intelligence
Computer hardware
Image Processing and Computer Vision
Health Informatics
Computer Communication Networks
Artificial Intelligence
Computer Hardware
ISBN 3-030-13736-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach.
Record Nr. UNISA-996466445103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Methods and Clinical Applications for Spine Imaging : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Computational Methods and Clinical Applications for Spine Imaging : 5th International Workshop and Challenge, CSI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Guoyan Zheng, Daniel Belavy, Yunliang Cai, Shuo Li
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (X, 181 p. 103 illus., 77 illus. in color.)
Disciplina 616.730754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Computer communication systems
Artificial intelligence
Computer hardware
Image Processing and Computer Vision
Health Informatics
Computer Communication Networks
Artificial Intelligence
Computer Hardware
ISBN 3-030-13736-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spinal Cord Gray Matter-White Matter Segmentation on Magnetic Resonance AMIRA Images with MD-GRU -- Predicting Scoliosis in DXA Scans Using Intermediate Representations -- Fast Registration of CT with Intra-operative Ultrasound Images for Spine Surgery -- Automated Grading of Modic Changes Using CNNs – Improving the Performance with Mix-up -- Error Estimation for Appearance Model Segmentation of Musculoskeletal Structures Using Multiple, Independent Sub-models -- Automated Segmentation of Intervertebral Disc using Fully Dilated Separable Deep Neural Networks -- Intensity Standardization of Skeleton in Follow-up Whole-Body MRI -- Towards a Deformable Multi-Surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning -- Intervertebral Disc Segmentation Using Mathematical Morphology—A CNN-Free Approach.
Record Nr. UNINA-9910337578003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui