Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers |
Autore | Caers Jef |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (240 p.) |
Disciplina | 550.15118 |
Soggetto topico |
Geology - Mathematical models
Earth sciences - Statistical methods Three-dimensional imaging in geology Uncertainty |
ISBN |
1-283-17797-8
1-119-99871-9 1-119-99593-0 1-119-99592-2 9786613177971 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Modeling Uncertainty in the Earth Sciences -- Contents -- Preface -- Acknowledgements -- 1 Introduction -- 1.1 Example Application -- 1.1.1 Description -- 1.1.2 3D Modeling -- 1.2 Modeling Uncertainty -- Further Reading -- 2 Review on Statistical Analysis and Probability Theory -- 2.1 Introduction -- 2.2 Displaying Data with Graphs -- 2.2.1 Histograms -- 2.3 Describing Data with Numbers -- 2.3.1 Measuring the Center -- 2.3.2 Measuring the Spread -- 2.3.3 Standard Deviation and Variance -- 2.3.4 Properties of the Standard Deviation -- 2.3.5 Quantiles and the QQ Plot -- 2.4 Probability -- 2.4.1 Introduction -- 2.4.2 Sample Space, Event, Outcomes -- 2.4.3 Conditional Probability -- 2.4.4 Bayes' Rule -- 2.5 Random Variables -- 2.5.1 Discrete Random Variables -- 2.5.2 Continuous Random Variables -- 2.5.2.1 Probability Density Function (pdf) -- 2.5.2.2 Cumulative Distribution Function -- 2.5.3 Expectation and Variance -- 2.5.3.1 Expectation -- 2.5.3.2 Population Variance -- 2.5.4 Examples of Distribution Functions -- 2.5.4.1 The Gaussian (Normal) Random Variable and Distribution -- 2.5.4.2 Bernoulli Random Variable -- 2.5.4.3 Uniform Random Variable -- 2.5.4.4 A Poisson Random Variable -- 2.5.4.5 The Lognormal Distribution -- 2.5.5 The Empirical Distribution Function versus the Distribution Model -- 2.5.6 Constructing a Distribution Function from Data -- 2.5.7 Monte Carlo Simulation -- 2.5.8 Data Transformations -- 2.6 Bivariate Data Analysis -- 2.6.1 Introduction -- 2.6.2 Graphical Methods: Scatter plots -- 2.6.3 Data Summary: Correlation (Coefficient) -- 2.6.3.1 Definition -- 2.6.3.2 Properties of r -- Further Reading -- 3 Modeling Uncertainty: Concepts and Philosophies -- 3.1 What is Uncertainty? -- 3.2 Sources of Uncertainty -- 3.3 Deterministic Modeling -- 3.4 Models of Uncertainty -- 3.5 Model and Data Relationship.
3.6 Bayesian View on Uncertainty -- 3.7 Model Verification and Falsification -- 3.8 Model Complexity -- 3.9 Talking about Uncertainty -- 3.10 Examples -- 3.10.1 Climate Modeling -- 3.10.1.1 Description -- 3.10.1.2 Creating Data Sets Using Models -- 3.10.1.3 Parameterization of Subgrid Variability -- 3.10.1.4 Model Complexity -- 3.10.2 Reservoir Modeling -- 3.10.2.1 Description -- 3.10.2.2 Creating Data Sets Using Models -- 3.10.2.3 Parameterization of Subgrid Variability -- 3.10.2.4 Model Complexity -- Further Reading -- 4 Engineering the Earth: Making Decisions Under Uncertainty -- 4.1 Introduction -- 4.2 Making Decisions -- 4.2.1 Example Problem -- 4.2.2 The Language of Decision Making -- 4.2.3 Structuring the Decision -- 4.2.4 Modeling the Decision -- 4.2.4.1 Payoffs and Value Functions -- 4.2.4.2 Weighting -- 4.2.4.3 Trade-Offs -- 4.2.4.4 Sensitivity Analysis -- 4.3 Tools for Structuring Decision Problems -- 4.3.1 Decision Trees -- 4.3.2 Building Decision Trees -- 4.3.3 Solving Decision Trees -- 4.3.4 Sensitivity Analysis -- Further Reading -- 5 Modeling Spatial Continuity -- 5.1 Introduction -- 5.2 The Variogram -- 5.2.1 Autocorrelation in 1D -- 5.2.2 Autocorrelation in 2D and 3D -- 5.2.3 The Variogram and Covariance Function -- 5.2.4 Variogram Analysis -- 5.2.4.1 Anisotropy -- 5.2.4.2 What is the Practical Meaning of a Variogram? -- 5.2.5 A Word on Variogram Modeling -- 5.3 The Boolean or Object Model -- 5.3.1 Motivation -- 5.3.2 Object Models -- 5.4 3D Training Image Models -- Further Reading -- 6 Modeling Spatial Uncertainty -- 6.1 Introduction -- 6.2 Object-Based Simulation -- 6.3 Training Image Methods -- 6.3.1 Principle of Sequential Simulation -- 6.3.2 Sequential Simulation Based on Training Images -- 6.3.3 Example of a 3D Earth Model -- 6.4 Variogram-Based Methods -- 6.4.1 Introduction -- 6.4.2 Linear Estimation. 6.4.3 Inverse Square Distance -- 6.4.4 Ordinary Kriging -- 6.4.5 The Kriging Variance -- 6.4.6 Sequential Gaussian Simulation -- 6.4.6.1 Kriging to Create a Model of Uncertainty -- 6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation -- Further Reading -- 7 Constraining Spatial Models of Uncertainty with Data -- 7.1 Data Integration -- 7.2 Probability-Based Approaches -- 7.2.1 Introduction -- 7.2.2 Calibration of Information Content -- 7.2.3 Integrating Information Content -- 7.2.4 Application to Modeling Spatial Uncertainty -- 7.3 Variogram-Based Approaches -- 7.4 Inverse Modeling Approaches -- 7.4.1 Introduction -- 7.4.2 The Role of Bayes' Rule in Inverse Model Solutions -- 7.4.3 Sampling Methods -- 7.4.3.1 Rejection Sampling -- 7.4.3.2 Metropolis Sampler -- 7.4.4 Optimization Methods -- Further Reading -- 8 Modeling Structural Uncertainty -- 8.1 Introduction -- 8.2 Data for Structural Modeling in the Subsurface -- 8.3 Modeling a Geological Surface -- 8.4 Constructing a Structural Model -- 8.4.1 Geological Constraints and Consistency -- 8.4.2 Building the Structural Model -- 8.5 Gridding the Structural Model -- 8.5.1 Stratigraphic Grids -- 8.5.2 Grid Resolution -- 8.6 Modeling Surfaces through Thicknesses -- 8.7 Modeling Structural Uncertainty -- 8.7.1 Sources of Uncertainty -- 8.7.2 Models of Structural Uncertainty -- Further Reading -- 9 Visualizing Uncertainty -- 9.1 Introduction -- 9.2 The Concept of Distance -- 9.3 Visualizing Uncertainty -- 9.3.1 Distances, Metric Space and Multidimensional Scaling -- 9.3.2 Determining the Dimension of Projection -- 9.3.3 Kernels and Feature Space -- 9.3.4 Visualizing the Data-Model Relationship -- Further Reading -- 10 Modeling Response Uncertainty -- 10.1 Introduction -- 10.2 Surrogate Models and Ranking -- 10.3 Experimental Design and Response Surface Analysis -- 10.3.1 Introduction. 10.3.2 The Design of Experiments -- 10.3.3 Response Surface Designs -- 10.3.4 Simple Illustrative Example -- 10.3.5 Limitations -- 10.4 Distance Methods for Modeling Response Uncertainty -- 10.4.1 Introduction -- 10.4.2 Earth Model Selection by Clustering -- 10.4.2.1 Introduction -- 10.4.2.2 k-Means Clustering -- 10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation -- 10.4.3 Oil Reservoir Case Study -- 10.4.4 Sensitivity Analysis -- 10.4.5 Limitations -- Further Reading -- 11 Value of Information -- 11.1 Introduction -- 11.2 The Value of Information Problem -- 11.2.1 Introduction -- 11.2.2 Reliability versus Information Content -- 11.2.3 Summary of the VOI Methodology -- 11.2.3.1 Steps 1 and 2: VOI Decision Tree -- 11.2.3.2 Steps 3 and 4: Value of Perfect Information -- 11.2.3.3 Step 5: Value of Imperfect Information -- 11.2.4 Value of Information for Earth Modeling Problems -- 11.2.5 Earth Models -- 11.2.6 Value of Information Calculation -- 11.2.7 Example Case Study -- 11.2.7.1 Introduction -- 11.2.7.2 Earth Modeling -- 11.2.7.3 Decision Problem -- 11.2.7.4 The Possible Data Sources -- 11.2.7.5 Data Interpretation -- Further Reading -- 12 Example Case Study -- 12.1 Introduction -- 12.1.1 General Description -- 12.1.2 Contaminant Transport -- 12.1.3 Costs Involved -- 12.2 Solution -- 12.2.1 Solving the Decision Problem -- 12.2.2 Buying More Data -- 12.2.2.1 Buying Geological Information -- 12.2.2.2 Buying Geophysical Information -- 12.3 Sensitivity Analysis -- Index. |
Record Nr. | UNINA-9910141250103321 |
Caers Jef | ||
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling uncertainty in the earth sciences [[electronic resource] /] / Jef Caers |
Autore | Caers Jef |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (240 p.) |
Disciplina | 550.15118 |
Soggetto topico |
Geology - Mathematical models
Earth sciences - Statistical methods Three-dimensional imaging in geology Uncertainty |
ISBN |
1-283-17797-8
1-119-99871-9 1-119-99593-0 1-119-99592-2 9786613177971 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Modeling Uncertainty in the Earth Sciences -- Contents -- Preface -- Acknowledgements -- 1 Introduction -- 1.1 Example Application -- 1.1.1 Description -- 1.1.2 3D Modeling -- 1.2 Modeling Uncertainty -- Further Reading -- 2 Review on Statistical Analysis and Probability Theory -- 2.1 Introduction -- 2.2 Displaying Data with Graphs -- 2.2.1 Histograms -- 2.3 Describing Data with Numbers -- 2.3.1 Measuring the Center -- 2.3.2 Measuring the Spread -- 2.3.3 Standard Deviation and Variance -- 2.3.4 Properties of the Standard Deviation -- 2.3.5 Quantiles and the QQ Plot -- 2.4 Probability -- 2.4.1 Introduction -- 2.4.2 Sample Space, Event, Outcomes -- 2.4.3 Conditional Probability -- 2.4.4 Bayes' Rule -- 2.5 Random Variables -- 2.5.1 Discrete Random Variables -- 2.5.2 Continuous Random Variables -- 2.5.2.1 Probability Density Function (pdf) -- 2.5.2.2 Cumulative Distribution Function -- 2.5.3 Expectation and Variance -- 2.5.3.1 Expectation -- 2.5.3.2 Population Variance -- 2.5.4 Examples of Distribution Functions -- 2.5.4.1 The Gaussian (Normal) Random Variable and Distribution -- 2.5.4.2 Bernoulli Random Variable -- 2.5.4.3 Uniform Random Variable -- 2.5.4.4 A Poisson Random Variable -- 2.5.4.5 The Lognormal Distribution -- 2.5.5 The Empirical Distribution Function versus the Distribution Model -- 2.5.6 Constructing a Distribution Function from Data -- 2.5.7 Monte Carlo Simulation -- 2.5.8 Data Transformations -- 2.6 Bivariate Data Analysis -- 2.6.1 Introduction -- 2.6.2 Graphical Methods: Scatter plots -- 2.6.3 Data Summary: Correlation (Coefficient) -- 2.6.3.1 Definition -- 2.6.3.2 Properties of r -- Further Reading -- 3 Modeling Uncertainty: Concepts and Philosophies -- 3.1 What is Uncertainty? -- 3.2 Sources of Uncertainty -- 3.3 Deterministic Modeling -- 3.4 Models of Uncertainty -- 3.5 Model and Data Relationship.
3.6 Bayesian View on Uncertainty -- 3.7 Model Verification and Falsification -- 3.8 Model Complexity -- 3.9 Talking about Uncertainty -- 3.10 Examples -- 3.10.1 Climate Modeling -- 3.10.1.1 Description -- 3.10.1.2 Creating Data Sets Using Models -- 3.10.1.3 Parameterization of Subgrid Variability -- 3.10.1.4 Model Complexity -- 3.10.2 Reservoir Modeling -- 3.10.2.1 Description -- 3.10.2.2 Creating Data Sets Using Models -- 3.10.2.3 Parameterization of Subgrid Variability -- 3.10.2.4 Model Complexity -- Further Reading -- 4 Engineering the Earth: Making Decisions Under Uncertainty -- 4.1 Introduction -- 4.2 Making Decisions -- 4.2.1 Example Problem -- 4.2.2 The Language of Decision Making -- 4.2.3 Structuring the Decision -- 4.2.4 Modeling the Decision -- 4.2.4.1 Payoffs and Value Functions -- 4.2.4.2 Weighting -- 4.2.4.3 Trade-Offs -- 4.2.4.4 Sensitivity Analysis -- 4.3 Tools for Structuring Decision Problems -- 4.3.1 Decision Trees -- 4.3.2 Building Decision Trees -- 4.3.3 Solving Decision Trees -- 4.3.4 Sensitivity Analysis -- Further Reading -- 5 Modeling Spatial Continuity -- 5.1 Introduction -- 5.2 The Variogram -- 5.2.1 Autocorrelation in 1D -- 5.2.2 Autocorrelation in 2D and 3D -- 5.2.3 The Variogram and Covariance Function -- 5.2.4 Variogram Analysis -- 5.2.4.1 Anisotropy -- 5.2.4.2 What is the Practical Meaning of a Variogram? -- 5.2.5 A Word on Variogram Modeling -- 5.3 The Boolean or Object Model -- 5.3.1 Motivation -- 5.3.2 Object Models -- 5.4 3D Training Image Models -- Further Reading -- 6 Modeling Spatial Uncertainty -- 6.1 Introduction -- 6.2 Object-Based Simulation -- 6.3 Training Image Methods -- 6.3.1 Principle of Sequential Simulation -- 6.3.2 Sequential Simulation Based on Training Images -- 6.3.3 Example of a 3D Earth Model -- 6.4 Variogram-Based Methods -- 6.4.1 Introduction -- 6.4.2 Linear Estimation. 6.4.3 Inverse Square Distance -- 6.4.4 Ordinary Kriging -- 6.4.5 The Kriging Variance -- 6.4.6 Sequential Gaussian Simulation -- 6.4.6.1 Kriging to Create a Model of Uncertainty -- 6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation -- Further Reading -- 7 Constraining Spatial Models of Uncertainty with Data -- 7.1 Data Integration -- 7.2 Probability-Based Approaches -- 7.2.1 Introduction -- 7.2.2 Calibration of Information Content -- 7.2.3 Integrating Information Content -- 7.2.4 Application to Modeling Spatial Uncertainty -- 7.3 Variogram-Based Approaches -- 7.4 Inverse Modeling Approaches -- 7.4.1 Introduction -- 7.4.2 The Role of Bayes' Rule in Inverse Model Solutions -- 7.4.3 Sampling Methods -- 7.4.3.1 Rejection Sampling -- 7.4.3.2 Metropolis Sampler -- 7.4.4 Optimization Methods -- Further Reading -- 8 Modeling Structural Uncertainty -- 8.1 Introduction -- 8.2 Data for Structural Modeling in the Subsurface -- 8.3 Modeling a Geological Surface -- 8.4 Constructing a Structural Model -- 8.4.1 Geological Constraints and Consistency -- 8.4.2 Building the Structural Model -- 8.5 Gridding the Structural Model -- 8.5.1 Stratigraphic Grids -- 8.5.2 Grid Resolution -- 8.6 Modeling Surfaces through Thicknesses -- 8.7 Modeling Structural Uncertainty -- 8.7.1 Sources of Uncertainty -- 8.7.2 Models of Structural Uncertainty -- Further Reading -- 9 Visualizing Uncertainty -- 9.1 Introduction -- 9.2 The Concept of Distance -- 9.3 Visualizing Uncertainty -- 9.3.1 Distances, Metric Space and Multidimensional Scaling -- 9.3.2 Determining the Dimension of Projection -- 9.3.3 Kernels and Feature Space -- 9.3.4 Visualizing the Data-Model Relationship -- Further Reading -- 10 Modeling Response Uncertainty -- 10.1 Introduction -- 10.2 Surrogate Models and Ranking -- 10.3 Experimental Design and Response Surface Analysis -- 10.3.1 Introduction. 10.3.2 The Design of Experiments -- 10.3.3 Response Surface Designs -- 10.3.4 Simple Illustrative Example -- 10.3.5 Limitations -- 10.4 Distance Methods for Modeling Response Uncertainty -- 10.4.1 Introduction -- 10.4.2 Earth Model Selection by Clustering -- 10.4.2.1 Introduction -- 10.4.2.2 k-Means Clustering -- 10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation -- 10.4.3 Oil Reservoir Case Study -- 10.4.4 Sensitivity Analysis -- 10.4.5 Limitations -- Further Reading -- 11 Value of Information -- 11.1 Introduction -- 11.2 The Value of Information Problem -- 11.2.1 Introduction -- 11.2.2 Reliability versus Information Content -- 11.2.3 Summary of the VOI Methodology -- 11.2.3.1 Steps 1 and 2: VOI Decision Tree -- 11.2.3.2 Steps 3 and 4: Value of Perfect Information -- 11.2.3.3 Step 5: Value of Imperfect Information -- 11.2.4 Value of Information for Earth Modeling Problems -- 11.2.5 Earth Models -- 11.2.6 Value of Information Calculation -- 11.2.7 Example Case Study -- 11.2.7.1 Introduction -- 11.2.7.2 Earth Modeling -- 11.2.7.3 Decision Problem -- 11.2.7.4 The Possible Data Sources -- 11.2.7.5 Data Interpretation -- Further Reading -- 12 Example Case Study -- 12.1 Introduction -- 12.1.1 General Description -- 12.1.2 Contaminant Transport -- 12.1.3 Costs Involved -- 12.2 Solution -- 12.2.1 Solving the Decision Problem -- 12.2.2 Buying More Data -- 12.2.2.1 Buying Geological Information -- 12.2.2.2 Buying Geophysical Information -- 12.3 Sensitivity Analysis -- Index. |
Record Nr. | UNINA-9910830595503321 |
Caers Jef | ||
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling uncertainty in the earth sciences / / Jef Caers |
Autore | Caers Jef |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (240 p.) |
Disciplina | 551.01/5195 |
Soggetto topico |
Geology - Mathematical models
Earth sciences - Statistical methods Three-dimensional imaging in geology Uncertainty |
ISBN |
1-283-17797-8
1-119-99871-9 1-119-99593-0 1-119-99592-2 9786613177971 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Modeling Uncertainty in the Earth Sciences -- Contents -- Preface -- Acknowledgements -- 1 Introduction -- 1.1 Example Application -- 1.1.1 Description -- 1.1.2 3D Modeling -- 1.2 Modeling Uncertainty -- Further Reading -- 2 Review on Statistical Analysis and Probability Theory -- 2.1 Introduction -- 2.2 Displaying Data with Graphs -- 2.2.1 Histograms -- 2.3 Describing Data with Numbers -- 2.3.1 Measuring the Center -- 2.3.2 Measuring the Spread -- 2.3.3 Standard Deviation and Variance -- 2.3.4 Properties of the Standard Deviation -- 2.3.5 Quantiles and the QQ Plot -- 2.4 Probability -- 2.4.1 Introduction -- 2.4.2 Sample Space, Event, Outcomes -- 2.4.3 Conditional Probability -- 2.4.4 Bayes' Rule -- 2.5 Random Variables -- 2.5.1 Discrete Random Variables -- 2.5.2 Continuous Random Variables -- 2.5.2.1 Probability Density Function (pdf) -- 2.5.2.2 Cumulative Distribution Function -- 2.5.3 Expectation and Variance -- 2.5.3.1 Expectation -- 2.5.3.2 Population Variance -- 2.5.4 Examples of Distribution Functions -- 2.5.4.1 The Gaussian (Normal) Random Variable and Distribution -- 2.5.4.2 Bernoulli Random Variable -- 2.5.4.3 Uniform Random Variable -- 2.5.4.4 A Poisson Random Variable -- 2.5.4.5 The Lognormal Distribution -- 2.5.5 The Empirical Distribution Function versus the Distribution Model -- 2.5.6 Constructing a Distribution Function from Data -- 2.5.7 Monte Carlo Simulation -- 2.5.8 Data Transformations -- 2.6 Bivariate Data Analysis -- 2.6.1 Introduction -- 2.6.2 Graphical Methods: Scatter plots -- 2.6.3 Data Summary: Correlation (Coefficient) -- 2.6.3.1 Definition -- 2.6.3.2 Properties of r -- Further Reading -- 3 Modeling Uncertainty: Concepts and Philosophies -- 3.1 What is Uncertainty? -- 3.2 Sources of Uncertainty -- 3.3 Deterministic Modeling -- 3.4 Models of Uncertainty -- 3.5 Model and Data Relationship.
3.6 Bayesian View on Uncertainty -- 3.7 Model Verification and Falsification -- 3.8 Model Complexity -- 3.9 Talking about Uncertainty -- 3.10 Examples -- 3.10.1 Climate Modeling -- 3.10.1.1 Description -- 3.10.1.2 Creating Data Sets Using Models -- 3.10.1.3 Parameterization of Subgrid Variability -- 3.10.1.4 Model Complexity -- 3.10.2 Reservoir Modeling -- 3.10.2.1 Description -- 3.10.2.2 Creating Data Sets Using Models -- 3.10.2.3 Parameterization of Subgrid Variability -- 3.10.2.4 Model Complexity -- Further Reading -- 4 Engineering the Earth: Making Decisions Under Uncertainty -- 4.1 Introduction -- 4.2 Making Decisions -- 4.2.1 Example Problem -- 4.2.2 The Language of Decision Making -- 4.2.3 Structuring the Decision -- 4.2.4 Modeling the Decision -- 4.2.4.1 Payoffs and Value Functions -- 4.2.4.2 Weighting -- 4.2.4.3 Trade-Offs -- 4.2.4.4 Sensitivity Analysis -- 4.3 Tools for Structuring Decision Problems -- 4.3.1 Decision Trees -- 4.3.2 Building Decision Trees -- 4.3.3 Solving Decision Trees -- 4.3.4 Sensitivity Analysis -- Further Reading -- 5 Modeling Spatial Continuity -- 5.1 Introduction -- 5.2 The Variogram -- 5.2.1 Autocorrelation in 1D -- 5.2.2 Autocorrelation in 2D and 3D -- 5.2.3 The Variogram and Covariance Function -- 5.2.4 Variogram Analysis -- 5.2.4.1 Anisotropy -- 5.2.4.2 What is the Practical Meaning of a Variogram? -- 5.2.5 A Word on Variogram Modeling -- 5.3 The Boolean or Object Model -- 5.3.1 Motivation -- 5.3.2 Object Models -- 5.4 3D Training Image Models -- Further Reading -- 6 Modeling Spatial Uncertainty -- 6.1 Introduction -- 6.2 Object-Based Simulation -- 6.3 Training Image Methods -- 6.3.1 Principle of Sequential Simulation -- 6.3.2 Sequential Simulation Based on Training Images -- 6.3.3 Example of a 3D Earth Model -- 6.4 Variogram-Based Methods -- 6.4.1 Introduction -- 6.4.2 Linear Estimation. 6.4.3 Inverse Square Distance -- 6.4.4 Ordinary Kriging -- 6.4.5 The Kriging Variance -- 6.4.6 Sequential Gaussian Simulation -- 6.4.6.1 Kriging to Create a Model of Uncertainty -- 6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation -- Further Reading -- 7 Constraining Spatial Models of Uncertainty with Data -- 7.1 Data Integration -- 7.2 Probability-Based Approaches -- 7.2.1 Introduction -- 7.2.2 Calibration of Information Content -- 7.2.3 Integrating Information Content -- 7.2.4 Application to Modeling Spatial Uncertainty -- 7.3 Variogram-Based Approaches -- 7.4 Inverse Modeling Approaches -- 7.4.1 Introduction -- 7.4.2 The Role of Bayes' Rule in Inverse Model Solutions -- 7.4.3 Sampling Methods -- 7.4.3.1 Rejection Sampling -- 7.4.3.2 Metropolis Sampler -- 7.4.4 Optimization Methods -- Further Reading -- 8 Modeling Structural Uncertainty -- 8.1 Introduction -- 8.2 Data for Structural Modeling in the Subsurface -- 8.3 Modeling a Geological Surface -- 8.4 Constructing a Structural Model -- 8.4.1 Geological Constraints and Consistency -- 8.4.2 Building the Structural Model -- 8.5 Gridding the Structural Model -- 8.5.1 Stratigraphic Grids -- 8.5.2 Grid Resolution -- 8.6 Modeling Surfaces through Thicknesses -- 8.7 Modeling Structural Uncertainty -- 8.7.1 Sources of Uncertainty -- 8.7.2 Models of Structural Uncertainty -- Further Reading -- 9 Visualizing Uncertainty -- 9.1 Introduction -- 9.2 The Concept of Distance -- 9.3 Visualizing Uncertainty -- 9.3.1 Distances, Metric Space and Multidimensional Scaling -- 9.3.2 Determining the Dimension of Projection -- 9.3.3 Kernels and Feature Space -- 9.3.4 Visualizing the Data-Model Relationship -- Further Reading -- 10 Modeling Response Uncertainty -- 10.1 Introduction -- 10.2 Surrogate Models and Ranking -- 10.3 Experimental Design and Response Surface Analysis -- 10.3.1 Introduction. 10.3.2 The Design of Experiments -- 10.3.3 Response Surface Designs -- 10.3.4 Simple Illustrative Example -- 10.3.5 Limitations -- 10.4 Distance Methods for Modeling Response Uncertainty -- 10.4.1 Introduction -- 10.4.2 Earth Model Selection by Clustering -- 10.4.2.1 Introduction -- 10.4.2.2 k-Means Clustering -- 10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation -- 10.4.3 Oil Reservoir Case Study -- 10.4.4 Sensitivity Analysis -- 10.4.5 Limitations -- Further Reading -- 11 Value of Information -- 11.1 Introduction -- 11.2 The Value of Information Problem -- 11.2.1 Introduction -- 11.2.2 Reliability versus Information Content -- 11.2.3 Summary of the VOI Methodology -- 11.2.3.1 Steps 1 and 2: VOI Decision Tree -- 11.2.3.2 Steps 3 and 4: Value of Perfect Information -- 11.2.3.3 Step 5: Value of Imperfect Information -- 11.2.4 Value of Information for Earth Modeling Problems -- 11.2.5 Earth Models -- 11.2.6 Value of Information Calculation -- 11.2.7 Example Case Study -- 11.2.7.1 Introduction -- 11.2.7.2 Earth Modeling -- 11.2.7.3 Decision Problem -- 11.2.7.4 The Possible Data Sources -- 11.2.7.5 Data Interpretation -- Further Reading -- 12 Example Case Study -- 12.1 Introduction -- 12.1.1 General Description -- 12.1.2 Contaminant Transport -- 12.1.3 Costs Involved -- 12.2 Solution -- 12.2.1 Solving the Decision Problem -- 12.2.2 Buying More Data -- 12.2.2.1 Buying Geological Information -- 12.2.2.2 Buying Geophysical Information -- 12.3 Sensitivity Analysis -- Index. |
Record Nr. | UNINA-9910877142303321 |
Caers Jef | ||
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Petroleum geostatistics [[electronic resource] /] / Jef Caers |
Autore | Caers Jef |
Pubbl/distr/stampa | Richardson, Tex., : Society of Petroleum Engineers, 2005 |
Descrizione fisica | 1 online resource (vii, 88 p.) : ill |
Disciplina | 665.5015195 |
Collana | SPE interdisciplinary primer series |
Soggetto topico |
Geology - Statistical methods
Petroleum - Geology Geological modeling Hydrocarbon reservoirs |
Soggetto genere / forma | Electronic books. |
ISBN |
9781613992289 (e-book)
9781555631062 (pbk.) |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. The Role of Geostatistics in Reservoir Modeling -- 2. Modeling Geological Continuity -- 3. Building High-Resolution Geocellular Models -- 4. Geostatistical Methods for History Matching Under Geological Control -- 5. Modeling Uncertainty -- Index. |
Record Nr. | UNINA-9910462006603321 |
Caers Jef | ||
Richardson, Tex., : Society of Petroleum Engineers, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|