top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Autore Burger John Robert <1940->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, : Wiley, c2009
Descrizione fisica 1 online resource (384 p.)
Disciplina 612.8/23312
612.823312
Soggetto topico Memory - Computer simulation
Artificial intelligence
Soggetto genere / forma Electronic books.
ISBN 1-282-27902-5
9786612279027
0-470-46425-9
0-470-46419-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HUMAN MEMORY MODELED WITH STANDARD ANALOG AND DIGITAL CIRCUITS; CONTENTS; PREFACE; 1 BRAIN BEHAVIOR POINTS THE WAY; Introduction; Modeling; Why Thinking Dissipates So Few Calories; The Miracle of Parallel Processing; Singularity; The Benefits of Reading This Book; Overview of the Book; Applications of the Models in the Book; Conclusions; Exercises; 2 NEURAL MEMBRANES AND ANIMAL ELECTRICITY; Introduction; The Physical Neuron; Ionic Solutions and Stray Electrons; Nernst Voltage; Ion-Channel Model; Applications; Conclusions; Exercises; 3 NEURAL PULSES AND NEURAL MEMORY; Introduction
Derivation of a Neural Pulse Using Basic PhysicsNeuron Signal Propagation; Modeling Neurons as Adiabatic; Neurons for Memory; Applications; Conclusions; Exercises; Appendix: Asymptotically Adiabatic Circuits; 4 CIRCUITS AND SYSTEMS FOR MEMORIZATION AND RECALL; Introduction; Psychological Considerations When Modeling Human Memory; Basic Assumptions to Create a Model; Short-Term Memory and Consciousness; Cognitive Architecture; Discussion of the Model; Enabled Neural Logic; Models for Memorization; Applications; Conclusions; Exercises; 5 DENDRITIC PROCESSING AND HUMAN LEARNING; Introduction
Biological Versus Artificial Neural NetworksDendrites; Neurons for Combinational Learning; Neurons for State-Machine Learning; Learning Circuits; Dendritic Processing Models; Enabled Logic Directly at the Soma; Comments on the Adiabatic Nature of Dendrites; Applications; Conclusions; Exercises; Appendix: Circuit Simulations of Neural Soliton Propagation; Conclusions; 6 ARTIFICIAL LEARNING IN ARTIFICIAL NEURAL NETWORKS; Introduction; Artificial Neurons; Artificial Learning Methods; Discussion of Learning Methods; Conclusion; Exercises; 7 THE ASSET OF REVERSIBILITY IN HUMANS AND MACHINES
IntroductionSavants; Neural Models that Explain Savants; Parallel Processing and the Savant Brain; Computational Possibilities Using Conditional Toggle Memory; The Cost of Computation; Reversible Programming; Conclusions; Exercises; Appendix: Split-Level Charge Recovery Logic; 8 ELECTRICALLY REVERSIBLE NANOPROCESSORS; Introduction; A Gauge for Classical Parallelism; Design Rules for Electrical Reversibility; Reversible System Architecture; Architecture for Self-Analyzing Memory Words; Electrically Reversible Toggle Circuit; Reversible Addition Programming Example
Reversible Subtraction Programming ExampleConclusions; Exercises; 9 MULTIPLICATION, DIVISION, AND HAMILTONIAN CIRCUITS; Introduction; Unsigned Multiplication; Restoring Division; Solving Hard Problems; Hamiltonian Circuits; The Initialization of Toggle Memory in Nanoprocessors; Logically Reversible Programming Using Nanobrains; Conclusions; Exercises; 10 QUANTUM VERSUS CLASSICAL COMPUTING; Introduction; Physical Qubits; Quantum Boolean Functions; Quantum Computer Programming; Historical Quantum Computing Algorithms; Conclusions; Exercises; APPENDIX A HUMAN BRAIN ANATOMY; Components of a Brain
Forebrain Structure
Record Nr. UNINA-9910139753903321
Burger John Robert <1940->  
Hoboken, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Autore Burger John Robert <1940->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, : Wiley, c2009
Descrizione fisica 1 online resource (384 p.)
Disciplina 612.8/23312
612.823312
Soggetto topico Memory - Computer simulation
Artificial intelligence
ISBN 1-282-27902-5
9786612279027
0-470-46425-9
0-470-46419-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HUMAN MEMORY MODELED WITH STANDARD ANALOG AND DIGITAL CIRCUITS; CONTENTS; PREFACE; 1 BRAIN BEHAVIOR POINTS THE WAY; Introduction; Modeling; Why Thinking Dissipates So Few Calories; The Miracle of Parallel Processing; Singularity; The Benefits of Reading This Book; Overview of the Book; Applications of the Models in the Book; Conclusions; Exercises; 2 NEURAL MEMBRANES AND ANIMAL ELECTRICITY; Introduction; The Physical Neuron; Ionic Solutions and Stray Electrons; Nernst Voltage; Ion-Channel Model; Applications; Conclusions; Exercises; 3 NEURAL PULSES AND NEURAL MEMORY; Introduction
Derivation of a Neural Pulse Using Basic PhysicsNeuron Signal Propagation; Modeling Neurons as Adiabatic; Neurons for Memory; Applications; Conclusions; Exercises; Appendix: Asymptotically Adiabatic Circuits; 4 CIRCUITS AND SYSTEMS FOR MEMORIZATION AND RECALL; Introduction; Psychological Considerations When Modeling Human Memory; Basic Assumptions to Create a Model; Short-Term Memory and Consciousness; Cognitive Architecture; Discussion of the Model; Enabled Neural Logic; Models for Memorization; Applications; Conclusions; Exercises; 5 DENDRITIC PROCESSING AND HUMAN LEARNING; Introduction
Biological Versus Artificial Neural NetworksDendrites; Neurons for Combinational Learning; Neurons for State-Machine Learning; Learning Circuits; Dendritic Processing Models; Enabled Logic Directly at the Soma; Comments on the Adiabatic Nature of Dendrites; Applications; Conclusions; Exercises; Appendix: Circuit Simulations of Neural Soliton Propagation; Conclusions; 6 ARTIFICIAL LEARNING IN ARTIFICIAL NEURAL NETWORKS; Introduction; Artificial Neurons; Artificial Learning Methods; Discussion of Learning Methods; Conclusion; Exercises; 7 THE ASSET OF REVERSIBILITY IN HUMANS AND MACHINES
IntroductionSavants; Neural Models that Explain Savants; Parallel Processing and the Savant Brain; Computational Possibilities Using Conditional Toggle Memory; The Cost of Computation; Reversible Programming; Conclusions; Exercises; Appendix: Split-Level Charge Recovery Logic; 8 ELECTRICALLY REVERSIBLE NANOPROCESSORS; Introduction; A Gauge for Classical Parallelism; Design Rules for Electrical Reversibility; Reversible System Architecture; Architecture for Self-Analyzing Memory Words; Electrically Reversible Toggle Circuit; Reversible Addition Programming Example
Reversible Subtraction Programming ExampleConclusions; Exercises; 9 MULTIPLICATION, DIVISION, AND HAMILTONIAN CIRCUITS; Introduction; Unsigned Multiplication; Restoring Division; Solving Hard Problems; Hamiltonian Circuits; The Initialization of Toggle Memory in Nanoprocessors; Logically Reversible Programming Using Nanobrains; Conclusions; Exercises; 10 QUANTUM VERSUS CLASSICAL COMPUTING; Introduction; Physical Qubits; Quantum Boolean Functions; Quantum Computer Programming; Historical Quantum Computing Algorithms; Conclusions; Exercises; APPENDIX A HUMAN BRAIN ANATOMY; Components of a Brain
Forebrain Structure
Record Nr. UNINA-9910830294803321
Burger John Robert <1940->  
Hoboken, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Human memory modeled with standard analog and digital circuits [[electronic resource] ] : inspiration for man-made computers / / John Robert Burger
Autore Burger John Robert <1940->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, : Wiley, c2009
Descrizione fisica 1 online resource (384 p.)
Disciplina 612.8/23312
612.823312
Soggetto topico Memory - Computer simulation
Artificial intelligence
ISBN 1-282-27902-5
9786612279027
0-470-46425-9
0-470-46419-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto HUMAN MEMORY MODELED WITH STANDARD ANALOG AND DIGITAL CIRCUITS; CONTENTS; PREFACE; 1 BRAIN BEHAVIOR POINTS THE WAY; Introduction; Modeling; Why Thinking Dissipates So Few Calories; The Miracle of Parallel Processing; Singularity; The Benefits of Reading This Book; Overview of the Book; Applications of the Models in the Book; Conclusions; Exercises; 2 NEURAL MEMBRANES AND ANIMAL ELECTRICITY; Introduction; The Physical Neuron; Ionic Solutions and Stray Electrons; Nernst Voltage; Ion-Channel Model; Applications; Conclusions; Exercises; 3 NEURAL PULSES AND NEURAL MEMORY; Introduction
Derivation of a Neural Pulse Using Basic PhysicsNeuron Signal Propagation; Modeling Neurons as Adiabatic; Neurons for Memory; Applications; Conclusions; Exercises; Appendix: Asymptotically Adiabatic Circuits; 4 CIRCUITS AND SYSTEMS FOR MEMORIZATION AND RECALL; Introduction; Psychological Considerations When Modeling Human Memory; Basic Assumptions to Create a Model; Short-Term Memory and Consciousness; Cognitive Architecture; Discussion of the Model; Enabled Neural Logic; Models for Memorization; Applications; Conclusions; Exercises; 5 DENDRITIC PROCESSING AND HUMAN LEARNING; Introduction
Biological Versus Artificial Neural NetworksDendrites; Neurons for Combinational Learning; Neurons for State-Machine Learning; Learning Circuits; Dendritic Processing Models; Enabled Logic Directly at the Soma; Comments on the Adiabatic Nature of Dendrites; Applications; Conclusions; Exercises; Appendix: Circuit Simulations of Neural Soliton Propagation; Conclusions; 6 ARTIFICIAL LEARNING IN ARTIFICIAL NEURAL NETWORKS; Introduction; Artificial Neurons; Artificial Learning Methods; Discussion of Learning Methods; Conclusion; Exercises; 7 THE ASSET OF REVERSIBILITY IN HUMANS AND MACHINES
IntroductionSavants; Neural Models that Explain Savants; Parallel Processing and the Savant Brain; Computational Possibilities Using Conditional Toggle Memory; The Cost of Computation; Reversible Programming; Conclusions; Exercises; Appendix: Split-Level Charge Recovery Logic; 8 ELECTRICALLY REVERSIBLE NANOPROCESSORS; Introduction; A Gauge for Classical Parallelism; Design Rules for Electrical Reversibility; Reversible System Architecture; Architecture for Self-Analyzing Memory Words; Electrically Reversible Toggle Circuit; Reversible Addition Programming Example
Reversible Subtraction Programming ExampleConclusions; Exercises; 9 MULTIPLICATION, DIVISION, AND HAMILTONIAN CIRCUITS; Introduction; Unsigned Multiplication; Restoring Division; Solving Hard Problems; Hamiltonian Circuits; The Initialization of Toggle Memory in Nanoprocessors; Logically Reversible Programming Using Nanobrains; Conclusions; Exercises; 10 QUANTUM VERSUS CLASSICAL COMPUTING; Introduction; Physical Qubits; Quantum Boolean Functions; Quantum Computer Programming; Historical Quantum Computing Algorithms; Conclusions; Exercises; APPENDIX A HUMAN BRAIN ANATOMY; Components of a Brain
Forebrain Structure
Record Nr. UNINA-9910841743703321
Burger John Robert <1940->  
Hoboken, : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui