Computer Vision and Graphics [[electronic resource] ] : International Conference, ICCVG 2018, Warsaw, Poland, September 17 - 19, 2018, Proceedings / / edited by Leszek J. Chmielewski, Ryszard Kozera, Arkadiusz Orłowski, Konrad Wojciechowski, Alfred M. Bruckstein, Nicolai Petkov
| Computer Vision and Graphics [[electronic resource] ] : International Conference, ICCVG 2018, Warsaw, Poland, September 17 - 19, 2018, Proceedings / / edited by Leszek J. Chmielewski, Ryszard Kozera, Arkadiusz Orłowski, Konrad Wojciechowski, Alfred M. Bruckstein, Nicolai Petkov |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XIII, 536 p. 239 illus.) |
| Disciplina | 006.37 |
| Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| Soggetto topico |
Optical data processing
Artificial intelligence Computer organization Image Processing and Computer Vision Artificial Intelligence Computer Systems Organization and Communication Networks |
| ISBN | 3-030-00692-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Computer Graphics, Image Quality and Graphic -- User Interfaces -- Object Classification and Features -- 3D and Stereo Image Processing -- Low-level and Middle-level Image Processing -- Medical Image Analysis -- Motion Analysis and Tracking -- Security and Protection -- Pattern Recognition and New Concepts in Classification. |
| Record Nr. | UNISA-996466205103316 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Computer Vision and Graphics : International Conference, ICCVG 2018, Warsaw, Poland, September 17 - 19, 2018, Proceedings / / edited by Leszek J. Chmielewski, Ryszard Kozera, Arkadiusz Orłowski, Konrad Wojciechowski, Alfred M. Bruckstein, Nicolai Petkov
| Computer Vision and Graphics : International Conference, ICCVG 2018, Warsaw, Poland, September 17 - 19, 2018, Proceedings / / edited by Leszek J. Chmielewski, Ryszard Kozera, Arkadiusz Orłowski, Konrad Wojciechowski, Alfred M. Bruckstein, Nicolai Petkov |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XIII, 536 p. 239 illus.) |
| Disciplina | 006.37 |
| Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| Soggetto topico |
Optical data processing
Artificial intelligence Computer organization Image Processing and Computer Vision Artificial Intelligence Computer Systems Organization and Communication Networks |
| ISBN |
9783030006921
3030006921 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Computer Graphics, Image Quality and Graphic -- User Interfaces -- Object Classification and Features -- 3D and Stereo Image Processing -- Low-level and Middle-level Image Processing -- Medical Image Analysis -- Motion Analysis and Tracking -- Security and Protection -- Pattern Recognition and New Concepts in Classification. |
| Record Nr. | UNINA-9910349405103321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Management, Analytics and Innovation : Proceedings of ICDMAI 2024, Volume 1 / / edited by Neha Sharma, Amol C. Goje, Amlan Chakrabarti, Alfred M. Bruckstein
| Data Management, Analytics and Innovation : Proceedings of ICDMAI 2024, Volume 1 / / edited by Neha Sharma, Amol C. Goje, Amlan Chakrabarti, Alfred M. Bruckstein |
| Autore | Sharma Neha |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (664 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
GojeAmol C
ChakrabartiAmlan BrucksteinAlfred M |
| Collana | Lecture Notes in Networks and Systems |
| Soggetto topico |
Computational intelligence
Engineering - Data processing Big data Computational Intelligence Data Engineering Big Data |
| ISBN | 9789819732425 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- A Comprehensive Literature Review on Emerging Potentials of Machine Learning Algorithms on Geospatial Platform for Medicinal Plant Cultivation Management in Existing Scenario -- 1 Introduction -- 2 Literature Review -- 2.1 Overview on Medicinal Plant Cultivation (MPC) Management -- 2.2 Descriptive Machine Learning (M/L) Techniques for Geospatial Data Analysis -- 2.3 Findings from Literature -- 3 Proposed Framework for Medicinal Plant Cultivation Using Machine Learning Approach on Geospatial Platform -- 3.1 Phases of Medicinal Plant Cultivation -- 3.2 Machine Learning Algorithms -- 3.3 Performance Evaluation -- 4 Conclusion -- References -- Facial Features Recognition and Classification Using Machine Learning Model -- 1 Introduction -- 2 Related Works -- 3 Datasets -- 4 Proposed Method -- 4.1 Training the Machine Learning Model -- 4.2 Real-Time Detection Using Haar Cascades -- 5 Results and Discussion -- 6 Future Scope and Conclusion -- References -- An Intelligent System for Prediction of Lung Cancer Under Machine Learning Framework -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 3.1 Dataset Collection -- 3.2 Feature Selection -- 3.3 Split the Dataset -- 3.4 Model Building -- 4 Result Analysis -- 4.1 Confusion Matrix -- 5 Conclusion -- References -- Identification of Misinformation Using Word Embedding Technique Word2Vec, Machine Learning, and Deep Learning Models -- 1 Introduction -- 2 Related Work -- 2.1 Background Work -- 3 Proposed Methodology -- 3.1 Dataset Description -- 4 Results and Discussion -- 4.1 Data Collection and Cleaning -- 4.2 Data Visualization -- 4.3 Feature Extraction -- 4.4 Model Selection -- 4.5 Performance Measure -- 5 Conclusion and Future Scope -- References -- Multiscript Handwriting Recognition Using RNN Transformer Architecture -- 1 Introduction.
2 Related Works -- 3 Proposed Method -- 3.1 Recurrent Neural Network (RNN) -- 3.2 Transformer Architecture -- 4 Result and Discussion -- 5 Conclusion and Future Work -- References -- Enhancing Agriculture Productivity with IoT-Enabled Predictive Analytics and Machine Learning -- 1 Introduction -- 2 Literature Survey -- 3 Agile Agriculture Prototype -- 3.1 SAPS (Smart Agricultural Production System) -- 3.2 ACIS (Automated Crop Irrigation System) -- 4 Agile Agriculture Workflow -- 5 Simulation -- 6 Conclusion -- References -- Gender Gaps in the Context of Cryptocurrency Literacy: Evidence from Survey Data in Europe and Asia -- 1 Introduction -- 2 Data -- 3 Results and Discussion -- 4 Conclusion -- References -- An Optimized Machine Learning Model for Crop Yield Predication by Applying Weighted Ensemble Technique -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Optimized Ensemble Model (OEM) -- 3.1 Weight -- 3.2 Optimized Weight Calculation -- 3.3 A Weighted Optimized Ensemble Model Algorithm (OEM) -- 4 Experimental Setup -- 5 Result and Discussion -- 6 Conclusion -- References -- Crop Recommendation and Irrigation System Using Machine Learning with Integrated IoT Devices -- 1 Introduction -- 2 Literature Review -- 3 Problems with the Existing Methods -- 4 Proposed Methodology -- 5 Crop Recommendations Flow -- 6 Irrigation Flow -- 7 Implementation -- 8 Comparative Analysis -- 9 Results -- 10 Conclusion -- References -- Toward Space-Efficient Semantic Querying with Graph Databases -- 1 Introduction -- 2 Literature Survey -- 3 Methodology/Proposed Approach -- 3.1 Knowledge Graph Creation -- 3.2 Opportunity Identification -- 4 Challenges -- 5 Conclusion -- References -- Enhanced Artificial Neural Networks for Prostate Cancer Detection and Classification -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Method -- 4 Results and Discussion. 5 Conclusion -- References -- Agricultural Indicators as Predictors of Annual Water Quality: An Analysis of Interconnectedness and Prediction Using Machine Learning -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 3.1 Data -- 3.2 Machine Learning Methods -- 4 Experiments and Results -- 4.1 Insights on Water Quality -- 4.2 Linear Regression -- 4.3 Prediction -- 5 Limitations -- 6 Conclusions and Future Work -- References -- Predicting Mental Health Disorders in the Technical Workplace: A Study on Feature Selection and Classification Algorithms -- 1 Introduction -- 2 Background -- 3 Data Exploration -- 4 Modeling of Feature Selection -- 4.1 Feature Selection Using LASSO -- 4.2 Feature Selection Using RFECV -- 4.3 Feature Selection Using RFE -- 5 Performance Evaluations -- 5.1 LASSO-Based Classification -- 5.2 Classification with RFECV -- 5.3 Classification with RFE -- 6 Results and Discussions -- 7 Conclusion -- References -- Enhancing the Detection of Fake News in Social Media: A Comparison of Support Vector Machine Algorithms, Hugging Face Transformers, and Passive Aggressive Classifier -- 1 Problem Description -- 2 Introduction -- 3 Survey of Literature -- 3.1 Support Vector Machine (SVM) [1-4] -- 3.2 Hugging Face Transformers [6, 7] -- 3.3 Passive Aggressive Classifier [8] -- 4 Comparison of Various Algorithms -- 4.1 Proposed Comparison -- 4.2 Proposal for the New Work -- 5 Methodology -- 6 Algorithm Summary -- 7 Execution Environment -- 7.1 Powerful Processing -- 7.2 Scalability -- 7.3 Flexibility -- 7.4 Ease of Use -- 7.5 Cost-Effective -- 8 Inference Based on Test Results and Outputs from Table 1 -- 8.1 Hugging Face Model -- 8.2 Passive Aggressive Classifier -- 8.3 Support Vector Machine (SVM) -- 9 Model Fine-Tuning for Hugging Face Model -- 10 Conclusion -- References. A Multifactor Authentication Framework for Usability in Education Sectors in Uganda -- 1 Introduction -- 2 Related Works -- 3 Research Methodology -- 4 Results and Discussion of Findings -- 4.1 Username/Passwords -- 4.2 Face Recognition -- 4.3 Fingerprint Authentication -- 5 Framework Design for E-MuAF -- 6 E-Assessment Multifactor Authentication Framework -- 7 Conclusion -- References -- Rank Prediction for Indian Universities Based on National Institutional Ranking Framework -- 1 Introduction -- 2 Literature Review -- 3 Problem Statement -- 4 Research Method -- 4.1 NIRF Ranking Parameters and Sub-Parameters -- 4.2 ML Algorithms Used -- 5 Result and Discussion -- 6 Conclusion -- References -- Research Paper Summarization Using Extractive Approach -- 1 Introduction -- 2 Literature Review -- 3 Design and Implementation -- 4 Results and Discussion -- 5 Conclusion -- References -- Safarnaama: User Experience-Based Travel Recommendation System -- 1 Introduction -- 2 Review of Literature -- 2.1 Gaps in Literature Survey -- 3 Design of Safarnaama -- 3.1 Architectural Design -- 3.2 Data Description -- 3.3 Cold Start Problem -- 3.4 User Interface Design -- 3.5 Algorithms and Methods Used -- 4 Performance Analysis -- 4.1 Data Collection and Pre-processing -- 4.2 Formula for Custom Recommendations -- 4.3 App Development -- 4.4 Feedback Analysis -- 4.5 Result Analysis -- 5 Conclusion and Future Scope -- References -- Handling Missing Data in Longitudinal Anthropometric Data Using Multiple Imputation Method -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 3.1 Data Source -- 3.2 Imputation Methods -- 4 Pre-processing and Analysis -- 5 Experimental Results and Evaluation -- 5.1 Comparative Analysis of Imputation Methods -- 6 Conclusion -- References. From Pixels to Insight: Enhancing Metallic Component Defect Detection with GLCM Features and AI Explainability -- 1 Introduction -- 2 Methods and Methodology -- 2.1 Dataset -- 2.2 Feature Extraction -- 2.3 Training and Testing -- 3 Explainability and Shapley Additive Explanations (SHAP) Plots -- 3.1 Explainability -- 3.2 SHAP and SHAP Plots -- 3.3 Results and Discussion -- 4 Conclusions -- References -- Predicting Chronic Kidney Disease Progression Using Classification and Ensemble Learning -- 1 Introduction -- 2 Comprehensive Review -- 3 Proposed Framework -- 4 Experiment and Performance Evaluation -- 5 Performance Evaluation Metrics -- 6 Conclusions -- References -- Analyzing UNO Statistics on Land Use of Agricultural Practices by Using k-Means Clustering and SARIMA: Irrigated, Organic, and Overall Agricultural Activities on a Global Scale -- 1 Introduction -- 2 Literature Review -- 3 Data and Methods -- 4 Analysis -- 4.1 Silhouette Score -- 4.2 Limitations of k-Means Clustering -- 4.3 k-Means Clustering -- 4.4 SARIMA Prediction -- 5 Alternative Explanations for the Observed Results -- 6 Conclusion -- References -- Fruit and Vegetable Segmentation with Decision Trees -- 1 Introduction -- 2 Related Literature -- 3 Data Acquisition -- 4 Image Preprocessing -- 4.1 Image Segmentation -- 4.2 Feature Extraction -- 5 Classification -- 6 Results -- 7 Summary and Conclusion -- References -- Chatbot Development Simplified: An In-Depth Look at JIGYASABOT Platform and Alternatives -- 1 Introduction -- 2 Literature Survey -- 3 Problem Statement -- 4 Proposed Solution -- 4.1 Architecture -- 4.2 Survey Platforms Ratings and Results -- 5 Building Chatbots with JIGYASABOT -- 5.1 Design of JIGYASABOT Chatbot -- 6 Comparative Market Analysis -- 7 Use Cases and Innovations -- 8 Conclusion -- 9 Future Scope -- References. Guarding the Gateway: Data Privacy and Security in Metaverse Tourism. |
| Record Nr. | UNINA-9910874692703321 |
Sharma Neha
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Management, Analytics and Innovation : Proceedings of ICDMAI 2023 / / edited by Neha Sharma, Amol Goje, Amlan Chakrabarti, Alfred M. Bruckstein
| Data Management, Analytics and Innovation : Proceedings of ICDMAI 2023 / / edited by Neha Sharma, Amol Goje, Amlan Chakrabarti, Alfred M. Bruckstein |
| Autore | Sharma Neha |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (1068 pages) |
| Disciplina | 005.74 |
| Altri autori (Persone) |
GojeAmol
ChakrabartiAmlan BrucksteinAlfred M |
| Collana | Lecture Notes in Networks and Systems |
| Soggetto topico |
Computational intelligence
Engineering—Data processing Big data Computational Intelligence Data Engineering Big Data |
| Soggetto non controllato |
Engineering
Technology & Engineering |
| ISBN | 981-9914-14-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | A Smart System to Classify Walking and Sitting Activity based on EEG Signal -- Monitoring urban water-logging using SAR - A Mumbai case study -- Suspicious Event Detection of Cargo Vessels based on AIS Data -- Identifying Trends using Improved Affinity Propagation (IMAP) Clustering Algorithm on Evolving Data Stream -- Graphology based behavior prediction : Case study analysis -- Statistics Driven Suspicious Event Detection of Fishing Vessels based on AIS Data -- Distributed Reduced Alphabet Representation for Predicting Proinflammatory Peptides -- Prakruti Nishchitikaran of Human Body using Supervised Machine Learning Approach -- X-ABI: Towards Parameter Efficient Multilingual Adapter Based Inference for Cross-Lingual Transfer -- Comparative Study of Depth Estimation from 2-D Scene Using Deep Learning Model -- DCNN-based Transfer Learning approaches for Gender Recognition -- Analysis of Machine Learning Algorithms for COVID Detection Using Deep Learning -- Real-time learning towards assets allocation -- Named Entity Recognition over Dialogue Dataset using Pre-trained Transformers -- A Comparative Study of Distance-based Clustering Algorithms in Fuzzy Failure Modes and Effects Analysis -- Economical Solution to Automatic Evaluation of an OMR Sheet Using Image Processing -- Defense and evaluation against covert channel based attacks in Android smartphones -- From Bricks to Clicks: The Potential of Big Data Analytics for Revolutionizing the Information Landscape in Higher Education Sector -- Data science approaches to public health: case studies using routine health data from India -- Arboviral Epidemic Disease Forecasting - A Survey on Diagnostics and Outbreak Models -- Convolution Neural Network for Weed Detection -- Machine Learning Model for Brain Stock Prediction -- Analysis of Covid-19 Genome using Continuous Wavelet Transform. |
| Record Nr. | UNINA-9910728388203321 |
Sharma Neha
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data Management, Analytics and Innovation : Proceedings of ICDMAI 2021, Volume 2
| Data Management, Analytics and Innovation : Proceedings of ICDMAI 2021, Volume 2 |
| Autore | Sharma Neha |
| Pubbl/distr/stampa | Singapore : , : Springer Singapore Pte. Limited, , 2021 |
| Descrizione fisica | 1 online resource (530 pages) |
| Altri autori (Persone) |
ChakrabartiAmlan
BalasValentina Emilia BrucksteinAlfred M |
| Collana | Lecture Notes on Data Engineering and Communications Technologies Ser. |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-16-2937-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Data Management, Analytics and Innovation |
| Record Nr. | UNINA-9910502645503321 |
Sharma Neha
|
||
| Singapore : , : Springer Singapore Pte. Limited, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Scale Space and Variational Methods in Computer Vision [[electronic resource] ] : Third International Conference, SSVM 2011, Ein-Gedi, Israel, May 29 -- June 2, 2011, Revised Selected Papers / / edited by Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexander M. Bronstein, Michael M. Bronstein
| Scale Space and Variational Methods in Computer Vision [[electronic resource] ] : Third International Conference, SSVM 2011, Ein-Gedi, Israel, May 29 -- June 2, 2011, Revised Selected Papers / / edited by Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexander M. Bronstein, Michael M. Bronstein |
| Edizione | [1st ed. 2012.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 |
| Descrizione fisica | 1 online resource (XIV, 798 p.) |
| Disciplina |
006.6
006.37 |
| Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| Soggetto topico |
Optical data processing
Computer graphics Pattern recognition Algorithms Data mining Computers Image Processing and Computer Vision Computer Graphics Pattern Recognition Algorithm Analysis and Problem Complexity Data Mining and Knowledge Discovery Computation by Abstract Devices |
| ISBN | 3-642-24785-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466245403316 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2012 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Swarms and Network Intelligence in Search / / by Yaniv Altshuler, Alex Pentland, Alfred M. Bruckstein
| Swarms and Network Intelligence in Search / / by Yaniv Altshuler, Alex Pentland, Alfred M. Bruckstein |
| Autore | Altshuler Yaniv |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (IX, 238 p. 116 illus., 53 illus. in color.) |
| Disciplina | 006.3824 |
| Collana | Studies in Computational Intelligence |
| Soggetto topico |
Computational intelligence
Artificial intelligence Computational Intelligence Artificial Intelligence |
| ISBN | 3-319-63604-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction to Swarm Search -- Cooperative “Swarm Cleaning” of Stationary Domains -- Swarm Search of Expanding Regions in Grids: Lower Bounds -- Swarm Search of Expanding Regions in Grids: Upper Bounds -- The Search Complexity of Collaborative Swarms Expanding Z2 Grid Regions. |
| Record Nr. | UNINA-9910299882803321 |
Altshuler Yaniv
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||