Dynamical systems and bifurcations : proceedings, Groningen, 1984 / / edited by B. L. J. Braaksma, H. W Broer and F. Takens |
Edizione | [1st ed. 1985.] |
Pubbl/distr/stampa | Berlin : , : Springer-Verlag, , [1985] |
Descrizione fisica | 1 online resource (VIII, 132 p.) |
Disciplina | 515.35 |
Collana | Lecture notes in mathematics |
Soggetto topico | Bifurcation theory |
ISBN | 3-540-39411-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | An elementary proof of the conley — Zehnder theorem in symplectic geometry -- An "A-Priori" estimate for oscillatory-equations -- On the structure of germs of vector fields in ?3 whose linear part generates rotations -- Fixed point results for symplectic maps related to the arnold - conjecture -- Topological invariants as numbers of translation -- Abelian integrals and global hopf bifurcations -- On the numerical determination of the dimension of an attractor -- Global stability of generic two-parameter families of gradients on three-manifolds. |
Record Nr. | UNISA-996466649103316 |
Berlin : , : Springer-Verlag, , [1985] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Unfoldings and bifurcations of quasi-periodic tori / / H.W. Broer [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (189 p.) |
Disciplina | 515/.352 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Flows (Differentiable dynamical systems)
Bifurcation theory Torus (Geometry) |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0844-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: UNFOLDINGS OF QUASI�PERIODIC TORI""; ""1. Introduction""; ""2. Preliminaries""; ""a. Invariant manifolds, normal linearization, integrability""; ""b. Unfoldings of matrices""; ""3. The integrable case""; ""a. The general (dissipative) context""; ""b. The volume preserving context""; ""c. The symplectic context""; ""4. The nearly integrable case in the general (dissipative) context""; ""5. The nearly integrable cases in the volume preserving and the symplectic (m = n) contexts""; ""a. Addition of local parameters""; ""b. The volume preserving case m = 1""
""c. The symplectic case m = n""""6. The nearly integrable case in the general symplectic context""; ""a. General remarks""; ""b. Normal linearization""; ""c. The results""; ""7. Applications�Related results""; ""a. A more general stability result""; ""b. Comparison with Moser's modifying terms""; ""c. Fewer parameters""; ""d. Applications to local bifurcation theory""; ""e. A locally free [omitted][sup(n)]�action""; ""f. Oscillators with quasi�periodic forcing""; ""8. Proof of the main result""; ""a. Introduction""; ""b. Proof of Theorem 8.1""; ""c. Proof of Theorem 6.1""; ""Appendix"" ""Finite differentiability""""PART II: TOWARD A QUASI�PERIODIC BIFURCATION THEORY""; ""1. Introduction""; ""2. A higher order normal form theory""; ""a. The case m = 1""; ""b. The case m = 2""; ""c. Whitney�smoothness in the frequencies""; ""d. The local approach""; ""3. The bifurcation models""; ""a. Preliminaries""; ""b. The quasi�periodic period�doubling bifurcation""; ""c. The quasi�periodic Hopf�bifurcation""; ""d. The quasi�periodic saddle�node bifurcation""; ""4. Applications""; ""a. Oscillators with quasi�periodic forcing""; ""b. Local bifurcations"" ""5. Proof of the Saddle�Node Stability Theorem""""a. Formulation""; ""b. Transfer of the perturbation problem""; ""c. Proof""; ""Appendix""; ""References"" |
Record Nr. | UNINA-9910480687103321 |
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unfoldings and bifurcations of quasi-periodic tori / / H.W. Broer [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (189 p.) |
Disciplina | 515/.352 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Flows (Differentiable dynamical systems)
Bifurcation theory Torus (Geometry) |
ISBN | 1-4704-0844-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: UNFOLDINGS OF QUASI�PERIODIC TORI""; ""1. Introduction""; ""2. Preliminaries""; ""a. Invariant manifolds, normal linearization, integrability""; ""b. Unfoldings of matrices""; ""3. The integrable case""; ""a. The general (dissipative) context""; ""b. The volume preserving context""; ""c. The symplectic context""; ""4. The nearly integrable case in the general (dissipative) context""; ""5. The nearly integrable cases in the volume preserving and the symplectic (m = n) contexts""; ""a. Addition of local parameters""; ""b. The volume preserving case m = 1""
""c. The symplectic case m = n""""6. The nearly integrable case in the general symplectic context""; ""a. General remarks""; ""b. Normal linearization""; ""c. The results""; ""7. Applications�Related results""; ""a. A more general stability result""; ""b. Comparison with Moser's modifying terms""; ""c. Fewer parameters""; ""d. Applications to local bifurcation theory""; ""e. A locally free [omitted][sup(n)]�action""; ""f. Oscillators with quasi�periodic forcing""; ""8. Proof of the main result""; ""a. Introduction""; ""b. Proof of Theorem 8.1""; ""c. Proof of Theorem 6.1""; ""Appendix"" ""Finite differentiability""""PART II: TOWARD A QUASI�PERIODIC BIFURCATION THEORY""; ""1. Introduction""; ""2. A higher order normal form theory""; ""a. The case m = 1""; ""b. The case m = 2""; ""c. Whitney�smoothness in the frequencies""; ""d. The local approach""; ""3. The bifurcation models""; ""a. Preliminaries""; ""b. The quasi�periodic period�doubling bifurcation""; ""c. The quasi�periodic Hopf�bifurcation""; ""d. The quasi�periodic saddle�node bifurcation""; ""4. Applications""; ""a. Oscillators with quasi�periodic forcing""; ""b. Local bifurcations"" ""5. Proof of the Saddle�Node Stability Theorem""""a. Formulation""; ""b. Transfer of the perturbation problem""; ""c. Proof""; ""Appendix""; ""References"" |
Record Nr. | UNINA-9910788873303321 |
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unfoldings and bifurcations of quasi-periodic tori / / H.W. Broer [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (189 p.) |
Disciplina | 515/.352 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Flows (Differentiable dynamical systems)
Bifurcation theory Torus (Geometry) |
ISBN | 1-4704-0844-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: UNFOLDINGS OF QUASI�PERIODIC TORI""; ""1. Introduction""; ""2. Preliminaries""; ""a. Invariant manifolds, normal linearization, integrability""; ""b. Unfoldings of matrices""; ""3. The integrable case""; ""a. The general (dissipative) context""; ""b. The volume preserving context""; ""c. The symplectic context""; ""4. The nearly integrable case in the general (dissipative) context""; ""5. The nearly integrable cases in the volume preserving and the symplectic (m = n) contexts""; ""a. Addition of local parameters""; ""b. The volume preserving case m = 1""
""c. The symplectic case m = n""""6. The nearly integrable case in the general symplectic context""; ""a. General remarks""; ""b. Normal linearization""; ""c. The results""; ""7. Applications�Related results""; ""a. A more general stability result""; ""b. Comparison with Moser's modifying terms""; ""c. Fewer parameters""; ""d. Applications to local bifurcation theory""; ""e. A locally free [omitted][sup(n)]�action""; ""f. Oscillators with quasi�periodic forcing""; ""8. Proof of the main result""; ""a. Introduction""; ""b. Proof of Theorem 8.1""; ""c. Proof of Theorem 6.1""; ""Appendix"" ""Finite differentiability""""PART II: TOWARD A QUASI�PERIODIC BIFURCATION THEORY""; ""1. Introduction""; ""2. A higher order normal form theory""; ""a. The case m = 1""; ""b. The case m = 2""; ""c. Whitney�smoothness in the frequencies""; ""d. The local approach""; ""3. The bifurcation models""; ""a. Preliminaries""; ""b. The quasi�periodic period�doubling bifurcation""; ""c. The quasi�periodic Hopf�bifurcation""; ""d. The quasi�periodic saddle�node bifurcation""; ""4. Applications""; ""a. Oscillators with quasi�periodic forcing""; ""b. Local bifurcations"" ""5. Proof of the Saddle�Node Stability Theorem""""a. Formulation""; ""b. Transfer of the perturbation problem""; ""c. Proof""; ""Appendix""; ""References"" |
Record Nr. | UNINA-9910817123503321 |
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|